BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27517614)

  • 1. Analysis of red blood cells' dynamic status in a simulated blood circulation system using an ultrahigh-speed simultaneous framing optical electronic camera.
    Zhang Q; Li Z; Zhao S; Wen W; Chang L; Yu H; Jiang T
    Cytometry A; 2017 Feb; 91(2):126-132. PubMed ID: 27517614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of red blood cell deformability change during blood storage.
    Zheng Y; Chen J; Cui T; Shehata N; Wang C; Sun Y
    Lab Chip; 2014 Feb; 14(3):577-83. PubMed ID: 24296983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a flow standard to enable highly reproducible measurements of deformability of stored red blood cells in a microfluidic device.
    Robidoux J; Laforce-Lavoie A; Charette SJ; Shevkoplyas SS; Yoshida T; Lewin A; Brouard D
    Transfusion; 2020 May; 60(5):1032-1041. PubMed ID: 32237236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic laser speckle image decorrelation analysis for the assessment of red blood cell storage.
    Jeon HJ; Qureshi MM; Lee SY; Chung E
    PLoS One; 2019; 14(10):e0224036. PubMed ID: 31639179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfusion of stored red blood cells adhere in the rat microvasculature.
    Chin-Yee IH; Gray-Statchuk L; Milkovich S; Ellis CG
    Transfusion; 2009 Nov; 49(11):2304-10. PubMed ID: 19624601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformability based sorting of stored red blood cells reveals donor-dependent aging curves.
    Islamzada E; Matthews K; Guo Q; Santoso AT; Duffy SP; Scott MD; Ma H
    Lab Chip; 2020 Jan; 20(2):226-235. PubMed ID: 31796943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen.
    Picot J; Ndour PA; Lefevre SD; El Nemer W; Tawfik H; Galimand J; Da Costa L; Ribeil JA; de Montalembert M; Brousse V; Le Pioufle B; Buffet P; Le Van Kim C; Français O
    Am J Hematol; 2015 Apr; 90(4):339-45. PubMed ID: 25641515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying morphological heterogeneity: a study of more than 1 000 000 individual stored red blood cells.
    Piety NZ; Gifford SC; Yang X; Shevkoplyas SS
    Vox Sang; 2015 Oct; 109(3):221-30. PubMed ID: 25900518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow morphometry to assess the red blood cell storage lesion.
    Sierra F DA; Melzak KA; Janetzko K; Klüter H; Suhr H; Bieback K; Wiedemann P
    Cytometry A; 2017 Sep; 91(9):874-882. PubMed ID: 28472540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress and rheologic properties of stored red blood cells before and after transfusion to surgical patients.
    Nagababu E; Scott AV; Johnson DJ; Dwyer IM; Lipsitz JA; Barodka VM; Berkowitz DE; Frank SM
    Transfusion; 2016 May; 56(5):1101-11. PubMed ID: 26825863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Usefulness of frozen-thawed-deglycerolized red blood cells as quality control materials for red blood cell deformability test].
    Kim YK; Won DI; Kim HO; Shin S; Suh JS
    Korean J Lab Med; 2010 Dec; 30(6):697-701. PubMed ID: 21157158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput and Label-Free Blood-on-a-Chip for Malaria Diagnosis.
    Kang YJ; Ha YR; Lee SJ
    Anal Chem; 2016 Mar; 88(5):2912-22. PubMed ID: 26845250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model.
    Wang Y; You G; Chen P; Li J; Chen G; Wang B; Li P; Han D; Zhou H; Zhao L
    Biomicrofluidics; 2016 Mar; 10(2):024104. PubMed ID: 27014397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions.
    Anniss AM; Sparrow RL
    Transfusion; 2006 Sep; 46(9):1561-7. PubMed ID: 16965584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells.
    Ye T; Li H; Lam KY
    Langmuir; 2011 Mar; 27(6):3188-97. PubMed ID: 21332176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell rheology using single controlled laser-induced cavitation bubbles.
    Quinto-Su PA; Kuss C; Preiser PR; Ohl CD
    Lab Chip; 2011 Feb; 11(4):672-8. PubMed ID: 21183972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time red blood cell counting and osmolarity analysis using a photoacoustic-based microfluidic system.
    Zhao W; Yu H; Wen Y; Luo H; Jia B; Wang X; Liu L; Li WJ
    Lab Chip; 2021 Jun; 21(13):2586-2593. PubMed ID: 34008680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell storage duration and trauma.
    Sparrow RL
    Transfus Med Rev; 2015 Apr; 29(2):120-6. PubMed ID: 25573415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.