These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27517718)

  • 21. Coordination of two opposite flagella allows high-speed swimming and active turning of individual zoospores.
    Tran QD; Galiana E; Thomen P; Cohen C; Orange F; Peruani F; Noblin X
    Elife; 2022 Mar; 11():. PubMed ID: 35343437
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytophthora nicotianae transformants lacking dynein light chain 1 produce non-flagellate zoospores.
    Narayan RD; Blackman LM; Shan W; Hardham AR
    Fungal Genet Biol; 2010 Aug; 47(8):663-71. PubMed ID: 20451645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutually facilitated co-transport of two different viruses through reactive porous media.
    Xu S; Attinti R; Adams E; Wei J; Kniel K; Zhuang J; Jin Y
    Water Res; 2017 Oct; 123():40-48. PubMed ID: 28646749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media.
    Chen H; Gao B; Li H; Ma LQ
    J Contam Hydrol; 2011 Sep; 126(1-2):29-36. PubMed ID: 21775014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Temperature, Concentration, Age, and Algaecides on Phytophthora capsici Zoospore Infectivity.
    Granke LL; Hausbeck MK
    Plant Dis; 2010 Jan; 94(1):54-60. PubMed ID: 30754391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 27.
    Bassani I; Larousse M; Tran QD; Attard A; Galiana E
    Comput Struct Biotechnol J; 2020; 18():3766-3773. PubMed ID: 33304469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multi-scale Cryptosporidium/sand interactions in water treatment.
    Tufenkji N; Dixon DR; Considine R; Drummond CJ
    Water Res; 2006 Oct; 40(18):3315-31. PubMed ID: 16979211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport, retention, and size perturbation of graphene oxide in saturated porous media: effects of input concentration and grain size.
    Sun Y; Gao B; Bradford SA; Wu L; Chen H; Shi X; Wu J
    Water Res; 2015 Jan; 68():24-33. PubMed ID: 25462714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Concurrent agglomeration and straining govern the transport of
    Su Y; Gao B; Mao L
    Water Res; 2017 May; 115():84-93. PubMed ID: 28259817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface heterogeneity mediated transport of hydrochar nanoparticles in heterogeneous porous media.
    Yang J; Chen M; Yang H; Xu N; Feng G; Li Z; Su C; Wang D
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):32842-32855. PubMed ID: 32519110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature dependency of virus and nanoparticle transport and retention in saturated porous media.
    Sasidharan S; Torkzaban S; Bradford SA; Cook PG; Gupta VVSR
    J Contam Hydrol; 2017 Jan; 196():10-20. PubMed ID: 27979462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport of double-stranded ribonucleic acids (dsRNA) and deoxyribonucleic acids (DNA) in sand and iron oxide-coated sand columns under varying solution chemistries.
    Sodnikar K; Kaegi R; Christl I; Schroth MH; Sander M
    Environ Sci Process Impacts; 2023 Dec; 25(12):2067-2080. PubMed ID: 37870439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A simple in-vitro 'wet-plate' method for mass production of Phytophthora nicotianae zoospores and factors influencing zoospore production.
    Ahonsi MO; Banko TJ; Hong C
    J Microbiol Methods; 2007 Sep; 70(3):557-60. PubMed ID: 17683817
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen stress reduces zoospore survival of Phytophthora species in a simulated aquatic system.
    Kong P; Hong C
    BMC Microbiol; 2014 May; 14():124. PubMed ID: 24885900
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Environmental fitness of metalaxyl-resistant isolate of Phytophthora capsici].
    Wang G; Ma Y
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):627-34. PubMed ID: 26259487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudomonas and Burkholderia inhibit growth and asexual development of Phytophthora capsici.
    Khatun A; Farhana T; Sabir AA; Islam SMN; West HM; Rahman M; Islam T
    Z Naturforsch C J Biosci; 2018 Feb; 73(3-4):123-135. PubMed ID: 29397024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wild Type Sensitivity and Mutation Analysis for Resistance Risk to Fluopicolide in Phytophthora capsici.
    Lu XH; Hausbeck MK; Liu XL; Hao JJ
    Plant Dis; 2011 Dec; 95(12):1535-1541. PubMed ID: 30732018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antifungal activity of the osthol derivative JS-B against Phytophthora capsici.
    Wang CM; Guan W; Fang S; Chen H; Li YQ; Cai C; Fan YJ; Shi ZQ
    J Asian Nat Prod Res; 2010 Aug; 12(8):672-9. PubMed ID: 20706903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.