These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27517786)

  • 1. Strong Coupling of the Cyclotron Motion of Surface Electrons on Liquid Helium to a Microwave Cavity.
    Abdurakhimov LV; Yamashiro R; Badrutdinov AO; Konstantinov D
    Phys Rev Lett; 2016 Jul; 117(5):056803. PubMed ID: 27517786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rabi splitting induced by a metamaterial plasmon cavity.
    Zhang L; Zhang Y; Zhao Y; Zhai J; Li L
    Opt Express; 2010 Nov; 18(24):25052-60. PubMed ID: 21164850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Coupling between a Trapped Single Atom and an All-Fiber Cavity.
    Kato S; Aoki T
    Phys Rev Lett; 2015 Aug; 115(9):093603. PubMed ID: 26371652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling a single electron on superfluid helium to a superconducting resonator.
    Koolstra G; Yang G; Schuster DI
    Nat Commun; 2019 Nov; 10(1):5323. PubMed ID: 31757947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.
    He Y; Jiang C; Chen B; Li JJ; Zhu KD
    Opt Lett; 2012 Jul; 37(14):2943-5. PubMed ID: 22825186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong Coupling of a Single Ion to an Optical Cavity.
    Takahashi H; Kassa E; Christoforou C; Keller M
    Phys Rev Lett; 2020 Jan; 124(1):013602. PubMed ID: 31976684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal for manipulating and detecting spin and orbital States of trapped electrons on helium using cavity quantum electrodynamics.
    Schuster DI; Fragner A; Dykman MI; Lyon SA; Schoelkopf RJ
    Phys Rev Lett; 2010 Jul; 105(4):040503. PubMed ID: 20867827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Strong Coupling with Protein Vibrational Modes.
    Vergauwe RMA; George J; Chervy T; Hutchison JA; Shalabney A; Torbeev VY; Ebbesen TW
    J Phys Chem Lett; 2016 Oct; 7(20):4159-4164. PubMed ID: 27689759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.
    Wuttke C; Becker M; Brückner S; Rothhardt M; Rauschenbeutel A
    Opt Lett; 2012 Jun; 37(11):1949-51. PubMed ID: 22660083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuum Rabi splitting in a semiconductor circuit QED system.
    Toida H; Nakajima T; Komiyama S
    Phys Rev Lett; 2013 Feb; 110(6):066802. PubMed ID: 23432287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observing coherence effects in an overdamped quantum system.
    Lien YH; Barontini G; Scheucher M; Mergenthaler M; Goldwin J; Hinds EA
    Nat Commun; 2016 Dec; 7():13933. PubMed ID: 28000674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum-to-classical transition in cavity quantum electrodynamics.
    Fink JM; Steffen L; Studer P; Bishop LS; Baur M; Bianchetti R; Bozyigit D; Lang C; Filipp S; Leek PJ; Wallraff A
    Phys Rev Lett; 2010 Oct; 105(16):163601. PubMed ID: 21230970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-Controlled Switching of Strong Light-Matter Interactions using Liquid Crystals.
    Hertzog M; Rudquist P; Hutchison JA; George J; Ebbesen TW; Börjesson K
    Chemistry; 2017 Dec; 23(72):18166-18170. PubMed ID: 29155469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Vibrational Strong Coupling on an Ordered Liquid Crystal.
    Stemo G; Yamada H; Katsuki H; Yanagi H
    J Phys Chem B; 2022 Nov; 126(45):9399-9407. PubMed ID: 36331314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.