BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27517882)

  • 1. Perylene-Based All-Organic Redox Battery with Excellent Cycling Stability.
    Iordache A; Delhorbe V; Bardet M; Dubois L; Gutel T; Picard L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):22762-7. PubMed ID: 27517882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization.
    Li L; Hong YJ; Chen DY; Lin MJ
    Chemistry; 2017 Nov; 23(65):16612-16620. PubMed ID: 28967155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries.
    Li L; Gong HX; Chen DY; Lin MJ
    Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Perylene Diimide Crystal with High Capacity and Stable Cyclability for Na-Ion Batteries.
    Deng W; Shen Y; Qian J; Cao Y; Yang H
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21095-9. PubMed ID: 26357982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triphenylamine-Based Metal-Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability.
    Peng Z; Yi X; Liu Z; Shang J; Wang D
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14578-85. PubMed ID: 27225327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the Role of Aromatic Ring Size in Tuning the Electrochemical Performance of Small-Molecule Imide Cathodes for Lithium-Ion Batteries.
    Chen J; Gu S; Hao R; Liu K; Wang Z; Li Z; Yuan H; Guo H; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44330-44337. PubMed ID: 36125517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino-Acid-Substituted Perylene Diimide as the Organic Cathode Materials for Lithium-Ion Batteries.
    Seong H; Nam W; Kim G; Moon JH; Jin Y; Kwon SR; Lee JH; Choi J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity.
    Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries.
    Yuan C; Wu Q; Shao Q; Li Q; Gao B; Duan Q; Wang HG
    J Colloid Interface Sci; 2018 May; 517():72-79. PubMed ID: 29421682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel π-conjugated poly(biphenyl diimide) with full utilization of carbonyls as a highly stable organic electrode for Li-ion batteries.
    Wang Z; Zhang B; Zhang Y; Yan N; He G
    RSC Adv; 2020 Aug; 10(52):31049-31055. PubMed ID: 35520648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Anion Insertion in Molecular Phenothiazine-Based Redox-Active Positive Material for Organic Ion Batteries.
    Rajesh M; Dolhem F; Davoisne C; Becuwe M
    ChemSusChem; 2020 May; 13(9):2364-2370. PubMed ID: 32190982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.
    Lei Z; Yang Q; Xu Y; Guo S; Sun W; Liu H; Lv LP; Zhang Y; Wang Y
    Nat Commun; 2018 Feb; 9(1):576. PubMed ID: 29422540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Growth and Wrapping of Aminoanthraquinone Nanowires in 3 D Graphene Framework as Foldable Organic Cathode for Lithium-Ion Batteries.
    Yang G; Bu F; Huang Y; Zhang Y; Shakir I; Xu Y
    ChemSusChem; 2017 Sep; 10(17):3419-3426. PubMed ID: 28722277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.
    Chen H; Armand M; Demailly G; Dolhem F; Poizot P; Tarascon JM
    ChemSusChem; 2008; 1(4):348-55. PubMed ID: 18605101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Arylene Diimide Frameworks for Highly Stable Lithium Ion Batteries.
    Schon TB; Tilley AJ; Kynaston EL; Seferos DS
    ACS Appl Mater Interfaces; 2017 May; 9(18):15631-15637. PubMed ID: 28430407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Symmetric All-Organic Battery Containing a Dual Redox-Active Polymer as Cathode and Anode Material.
    Casado N; Mantione D; Shanmukaraj D; Mecerreyes D
    ChemSusChem; 2020 May; 13(9):2464-2470. PubMed ID: 31643146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthraquinone-Based Oligomer as a Long Cycle-Life Organic Electrode Material for Use in Rechargeable Batteries.
    Yao M; Sano H; Ando H; Kiyobayashi T; Takeichi N
    Chemphyschem; 2019 Apr; 20(7):967-971. PubMed ID: 30775839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc naphthalenedicarboxylate coordination complex: A promising anode material for lithium and sodium-ion batteries with good cycling stability.
    Fei H; Feng W; Xu T
    J Colloid Interface Sci; 2017 Feb; 488():277-281. PubMed ID: 27837718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Enhancement of Polymer Electrode Materials for Lithium-Ion Batteries: From a Rigid Homopolymer to Soft Copolymers.
    Yang J; Shi Y; Li M; Sun P; Xu Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32666-32672. PubMed ID: 32584017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Organic Molecular Cathode Composed of Naphthoquinones Bridged by Organodisulfide for Rechargeable Lithium Battery.
    Yu P; An J; Wang Z; Fu Y; Guo W
    Small; 2024 Apr; 20(14):e2308881. PubMed ID: 37984861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.