These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27517924)

  • 1. Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves.
    Oyunbaatar NE; Lee DH; Patil SJ; Kim ES; Lee DW
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile behaviors of cardiac muscle cells on mushroom-shaped micropillar arrays.
    Oyunbaatar NE; Shanmugasundaram A; Lee DW
    Colloids Surf B Biointerfaces; 2019 Feb; 174():103-109. PubMed ID: 30445252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-patterned SU-8 cantilever arrays for preliminary screening of cardiac toxicity.
    Kim JY; Choi YS; Lee BK; Lee DW
    Biosens Bioelectron; 2016 Jun; 80():456-462. PubMed ID: 26878482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Characterization of Human Pluripotent Stem Cell-Derived Cardiomyocytes by Use of Atomic Force Microscopy.
    Pribyl J; Pešl M; Caluori G; Acimovic I; Jelinkova S; Dvorak P; Skladal P; Rotrekl V
    Methods Mol Biol; 2019; 1886():343-353. PubMed ID: 30374878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Contraction Analysis of Human Engineered Heart Tissue for Cardiac Drug Safety Screening.
    Mannhardt I; Saleem U; Benzin A; Schulze T; Klampe B; Eschenhagen T; Hansen A
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28448053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the union method of microelectrode array and AFM for the recording of electromechanical activities in living cardiomyocytes.
    Tian J; Tu C; Huang B; Liang Y; Zhou J; Ye X
    Eur Biophys J; 2017 Jul; 46(5):495-507. PubMed ID: 28012038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars.
    Tanaka Y; Morishima K; Shimizu T; Kikuchi A; Yamato M; Okano T; Kitamori T
    Lab Chip; 2006 Feb; 6(2):230-5. PubMed ID: 16450032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force microscopy combined with human pluripotent stem cell derived cardiomyocytes for biomechanical sensing.
    Pesl M; Pribyl J; Acimovic I; Vilotic A; Jelinkova S; Salykin A; Lacampagne A; Dvorak P; Meli AC; Skladal P; Rotrekl V
    Biosens Bioelectron; 2016 Nov; 85():751-757. PubMed ID: 27266660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility.
    Kim DS; Choi YW; Shanmugasundaram A; Jeong YJ; Park J; Oyunbaatar NE; Kim ES; Choi M; Lee DW
    Nat Commun; 2020 Jan; 11(1):535. PubMed ID: 31988308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a cardiac-and-piezoelectric hybrid system for application in drug screening.
    Huang YH; Yang CF; Hsu YH
    Lab Chip; 2020 Sep; 20(18):3423-3434. PubMed ID: 32785399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces.
    Cañas N; Kamperman M; Völker B; Kroner E; McMeeking RM; Arzt E
    Acta Biomater; 2012 Jan; 8(1):282-8. PubMed ID: 21925624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the mechanodynamic response of cardiomyocytes with atomic force microscopy.
    Chang WT; Yu D; Lai YC; Lin KY; Liau I
    Anal Chem; 2013 Feb; 85(3):1395-400. PubMed ID: 23265281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force mechanobiology of pluripotent stem cell-derived cardiomyocytes.
    Liu J; Sun N; Bruce MA; Wu JC; Butte MJ
    PLoS One; 2012; 7(5):e37559. PubMed ID: 22624048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Monitoring of Changes in Cardiac Contractility Using Silicon Cantilever Arrays Integrated with Strain Sensors.
    Dong M; Oyunbaatar NE; Kanade PP; Kim DS; Lee DW
    ACS Sens; 2021 Oct; 6(10):3556-3563. PubMed ID: 34554741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetically Engineered Phage Induced Selective H9c2 Cardiomyocytes Patterning in PDMS Microgrooves.
    Kim Y; Kwon C; Jeon H
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28825662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of cardiac contractility using gold-coated SU-8 cantilevers and their application to drug-induced cardiac toxicity tests.
    Kim J; Shanmugasundaram A; Lee DW
    Analyst; 2021 Nov; 146(22):6768-6779. PubMed ID: 34642716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue Contraction Force Microscopy for Optimization of Engineered Cardiac Tissue.
    Schaefer JA; Tranquillo RT
    Tissue Eng Part C Methods; 2016 Jan; 22(1):76-83. PubMed ID: 26538167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes.
    Ribeiro AJ; Zaleta-Rivera K; Ashley EA; Pruitt BL
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15516-26. PubMed ID: 25133578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Process development for dry etching polydimethylsiloxane for neural electrodes.
    Anenden MP; Svehla M; Lovell NH; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2977-80. PubMed ID: 22254966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ curing of sliding SU-8 droplet over a microcontact printed pattern for tunable fabrication of a polydimethylsiloxane nanoslit.
    Kim CB; Chun H; Chung J; Lee KH; Lee JH; Song KB; Lee SH
    Anal Chem; 2011 Sep; 83(18):7221-6. PubMed ID: 21812411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.