These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 27517960)
1. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells. Kronhardt A; Beitzinger C; Barth H; Benz R Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27517960 [TBL] [Abstract][Full Text] [Related]
2. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. Ernst K; Langer S; Kaiser E; Osseforth C; Michaelis J; Popoff MR; Schwan C; Aktories K; Kahlert V; Malesevic M; Schiene-Fischer C; Barth H J Mol Biol; 2015 Mar; 427(6 Pt A):1224-38. PubMed ID: 25058685 [TBL] [Abstract][Full Text] [Related]
3. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin. Kreidler AM; Benz R; Barth H Arch Toxicol; 2017 Mar; 91(3):1431-1445. PubMed ID: 27106023 [TBL] [Abstract][Full Text] [Related]
4. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Blöcker D; Bachmeyer C; Benz R; Aktories K; Barth H Biochemistry; 2003 May; 42(18):5368-77. PubMed ID: 12731878 [TBL] [Abstract][Full Text] [Related]
5. FK506-binding protein 51 interacts with Clostridium botulinum C2 toxin and FK506 inhibits membrane translocation of the toxin in mammalian cells. Kaiser E; Böhm N; Ernst K; Langer S; Schwan C; Aktories K; Popoff M; Fischer G; Barth H Cell Microbiol; 2012 Aug; 14(8):1193-205. PubMed ID: 22420783 [TBL] [Abstract][Full Text] [Related]
6. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin. Schnell L; Mittler AK; Sadi M; Popoff MR; Schwan C; Aktories K; Mattarei A; Azarnia Tehran D; Montecucco C; Barth H Toxins (Basel); 2016 Apr; 8(4):101. PubMed ID: 27043629 [TBL] [Abstract][Full Text] [Related]
7. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin. Takehara M; Takagishi T; Seike S; Oda M; Sakaguchi Y; Hisatsune J; Ochi S; Kobayashi K; Nagahama M Toxins (Basel); 2017 Aug; 9(8):. PubMed ID: 28800062 [No Abstract] [Full Text] [Related]
8. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Haug G; Wilde C; Leemhuis J; Meyer DK; Aktories K; Barth H Biochemistry; 2003 Dec; 42(51):15284-91. PubMed ID: 14690438 [TBL] [Abstract][Full Text] [Related]
9. Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication. Bronnhuber A; Maier E; Riedl Z; Hajós G; Benz R; Barth H Toxicology; 2014 Feb; 316():25-33. PubMed ID: 24394545 [TBL] [Abstract][Full Text] [Related]
10. Differential requirement for the translocation of clostridial binary toxins: iota toxin requires a membrane potential gradient. Gibert M; Marvaud JC; Pereira Y; Hale ML; Stiles BG; Boquet P; Lamaze C; Popoff MR FEBS Lett; 2007 Apr; 581(7):1287-96. PubMed ID: 17350628 [TBL] [Abstract][Full Text] [Related]
11. The host cell chaperone Hsp90 is essential for translocation of the binary Clostridium botulinum C2 toxin into the cytosol. Haug G; Leemhuis J; Tiemann D; Meyer DK; Aktories K; Barth H J Biol Chem; 2003 Aug; 278(34):32266-74. PubMed ID: 12805360 [TBL] [Abstract][Full Text] [Related]
12. Formation of a biologically active toxin complex of the binary Clostridium botulinum C2 toxin without cell membrane interaction. Kaiser E; Haug G; Hliscs M; Aktories K; Barth H Biochemistry; 2006 Nov; 45(44):13361-8. PubMed ID: 17073457 [TBL] [Abstract][Full Text] [Related]
13. Cyclophilin A facilitates translocation of the Clostridium botulinum C2 toxin across membranes of acidified endosomes into the cytosol of mammalian cells. Kaiser E; Pust S; Kroll C; Barth H Cell Microbiol; 2009 May; 11(5):780-95. PubMed ID: 19159389 [TBL] [Abstract][Full Text] [Related]
14. Clostridium botulinum C2 toxin: low pH-induced pore formation is required for translocation of the enzyme component C2I into the cytosol of host cells. Blöcker D; Pohlmann K; Haug G; Bachmeyer C; Benz R; Aktories K; Barth H J Biol Chem; 2003 Sep; 278(39):37360-7. PubMed ID: 12869543 [TBL] [Abstract][Full Text] [Related]
15. ADP-ribosylation of skeletal muscle and non-muscle actin by Clostridium perfringens iota toxin. Schering B; Bärmann M; Chhatwal GS; Geipel U; Aktories K Eur J Biochem; 1988 Jan; 171(1-2):225-9. PubMed ID: 2892681 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clostridium difficile. Gülke I; Pfeifer G; Liese J; Fritz M; Hofmann F; Aktories K; Barth H Infect Immun; 2001 Oct; 69(10):6004-11. PubMed ID: 11553537 [TBL] [Abstract][Full Text] [Related]
17. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. Knapp O; Benz R; Gibert M; Marvaud JC; Popoff MR J Biol Chem; 2002 Feb; 277(8):6143-52. PubMed ID: 11741922 [TBL] [Abstract][Full Text] [Related]
18. Tailored ß-cyclodextrin blocks the translocation pores of binary exotoxins from C. botulinum and C. perfringens and protects cells from intoxication. Nestorovich EM; Karginov VA; Popoff MR; Bezrukov SM; Barth H PLoS One; 2011; 6(8):e23927. PubMed ID: 21887348 [TBL] [Abstract][Full Text] [Related]
19. Clostridium perfringens iota toxin: characterization of the cell-associated iota b complex. Stiles BG; Hale ML; Marvaud JC; Popoff MR Biochem J; 2002 Nov; 367(Pt 3):801-8. PubMed ID: 12175336 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis. Bachmeyer C; Orlik F; Barth H; Aktories K; Benz R J Mol Biol; 2003 Oct; 333(3):527-40. PubMed ID: 14556742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]