These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 27517970)
21. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. Koutsopoulos S; Zhang S J Control Release; 2012 Jun; 160(3):451-8. PubMed ID: 22465676 [TBL] [Abstract][Full Text] [Related]
22. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release. Liu Y; Zhang L; Wei W Int J Nanomedicine; 2017; 12():659-670. PubMed ID: 28176898 [TBL] [Abstract][Full Text] [Related]
23. An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles. Cho IS; Ooya T J Biomater Sci Polym Ed; 2018 Feb; 29(2):145-159. PubMed ID: 29134859 [TBL] [Abstract][Full Text] [Related]
24. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment. Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623 [TBL] [Abstract][Full Text] [Related]
25. The effect of protein structure on their controlled release from an injectable peptide hydrogel. Branco MC; Pochan DJ; Wagner NJ; Schneider JP Biomaterials; 2010 Dec; 31(36):9527-34. PubMed ID: 20952055 [TBL] [Abstract][Full Text] [Related]
26. [Preparation of functional chitosan thermosensitive hydrogel for slow release both rhBMP-2 and chlorhexidine]. Ma ZW; Wang R; Wu ZF; Chen D; Zhang BL; He W; Wang XJ; Liu Q; Xu J; Zhu H Sheng Wu Gong Cheng Xue Bao; 2007 Nov; 23(6):1049-54. PubMed ID: 18257235 [TBL] [Abstract][Full Text] [Related]
27. Biodegradable hydrogels for time-controlled release of tethered peptides or proteins. Brandl F; Hammer N; Blunk T; Tessmar J; Goepferich A Biomacromolecules; 2010 Feb; 11(2):496-504. PubMed ID: 20095560 [TBL] [Abstract][Full Text] [Related]
28. Western blot analysis of cells encapsulated in self-assembling peptide hydrogels. Burgess KA; Miller AF; Oceandy D; Saiani A Biotechniques; 2017 Dec; 63(6):253-260. PubMed ID: 29235971 [TBL] [Abstract][Full Text] [Related]
29. Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo. Van Hove AH; Burke K; Antonienko E; Brown E; Benoit DS J Control Release; 2015 Nov; 217():191-201. PubMed ID: 26365781 [TBL] [Abstract][Full Text] [Related]
30. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Qu J; Zhao X; Ma PX; Guo B Acta Biomater; 2017 Aug; 58():168-180. PubMed ID: 28583902 [TBL] [Abstract][Full Text] [Related]
31. Drug depot-anchoring hydrogel: A self-assembling scaffold for localized drug release and enhanced stem cell differentiation. Li R; Pang Z; He H; Lee S; Qin J; Wu J; Pang L; Wang J; Yang VC J Control Release; 2017 Sep; 261():234-245. PubMed ID: 28694033 [TBL] [Abstract][Full Text] [Related]
32. Characterisation of minimalist co-assembled fluorenylmethyloxycarbonyl self-assembling peptide systems for presentation of multiple bioactive peptides. Horgan CC; Rodriguez AL; Li R; Bruggeman KF; Stupka N; Raynes JK; Day L; White JW; Williams RJ; Nisbet DR Acta Biomater; 2016 Jul; 38():11-22. PubMed ID: 27131571 [TBL] [Abstract][Full Text] [Related]
33. RANKL release from self-assembling nanofiber hydrogels for inducing osteoclastogenesis in vitro. Xing JZ; Lu L; Unsworth LD; Major PW; Doschak MR; Kaipatur NR Acta Biomater; 2017 Feb; 49():306-315. PubMed ID: 27940164 [TBL] [Abstract][Full Text] [Related]
34. Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis. S V; A S; Annapoorna M; R J; Subramania I; Shantikumar V N; R J Colloids Surf B Biointerfaces; 2018 Jan; 161():129-138. PubMed ID: 29055865 [TBL] [Abstract][Full Text] [Related]
35. Near-infrared light triggered release of molecules from supramolecular hydrogel-nanorod composites. Highley CB; Kim M; Lee D; Burdick JA Nanomedicine (Lond); 2016 Jun; 11(12):1579-90. PubMed ID: 27176049 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of angiogenesis impairs bone healing in an in vivo murine rapid resynostosis model. Hyzy SL; Kajan I; Wilson DS; Lawrence KA; Mason D; Williams JK; Olivares-Navarrete R; Cohen DJ; Schwartz Z; Boyan BD J Biomed Mater Res A; 2017 Oct; 105(10):2742-2749. PubMed ID: 28589712 [TBL] [Abstract][Full Text] [Related]
37. Supramolecular Nanofibrous Peptide/Polymer Hydrogels for the Multiplexing of Bioactive Signals. Radvar E; Azevedo HS ACS Biomater Sci Eng; 2019 Sep; 5(9):4646-4656. PubMed ID: 33448837 [TBL] [Abstract][Full Text] [Related]
38. Development of kartogenin-conjugated chitosan-hyaluronic acid hydrogel for nucleus pulposus regeneration. Zhu Y; Tan J; Zhu H; Lin G; Yin F; Wang L; Song K; Wang Y; Zhou G; Yi W Biomater Sci; 2017 Mar; 5(4):784-791. PubMed ID: 28261733 [TBL] [Abstract][Full Text] [Related]
39. Diels-Alder mediated controlled release from a poly(ethylene glycol) based hydrogel. Koehler KC; Anseth KS; Bowman CN Biomacromolecules; 2013 Feb; 14(2):538-47. PubMed ID: 23311608 [TBL] [Abstract][Full Text] [Related]