These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 27517970)
41. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. Ishihara M; Obara K; Ishizuka T; Fujita M; Sato M; Masuoka K; Saito Y; Yura H; Matsui T; Hattori H; Kikuchi M; Kurita A J Biomed Mater Res A; 2003 Mar; 64(3):551-9. PubMed ID: 12579570 [TBL] [Abstract][Full Text] [Related]
42. Long-Term Controlled Protein Release from Poly(Ethylene Glycol) Hydrogels by Modulating Mesh Size and Degradation. Tong X; Lee S; Bararpour L; Yang F Macromol Biosci; 2015 Dec; 15(12):1679-86. PubMed ID: 26259711 [TBL] [Abstract][Full Text] [Related]
43. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Shamloo A; Sarmadi M; Aghababaie Z; Vossoughi M Int J Pharm; 2018 Feb; 537(1-2):278-289. PubMed ID: 29288809 [TBL] [Abstract][Full Text] [Related]
44. Functional Self-Assembling Peptide Nanofiber Hydrogels Designed for Nerve Degeneration. Sun Y; Li W; Wu X; Zhang N; Zhang Y; Ouyang S; Song X; Fang X; Seeram R; Xue W; He L; Wu W ACS Appl Mater Interfaces; 2016 Jan; 8(3):2348-59. PubMed ID: 26720334 [TBL] [Abstract][Full Text] [Related]
45. Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds. Zhang H; Park J; Jiang Y; Woodrow KA Acta Biomater; 2017 Jun; 55():183-193. PubMed ID: 28365480 [TBL] [Abstract][Full Text] [Related]
46. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications. Loo Y; Hauser CA Biomed Mater; 2015 Dec; 11(1):014103. PubMed ID: 26694103 [TBL] [Abstract][Full Text] [Related]
47. Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering. Holland TA; Tabata Y; Mikos AG J Control Release; 2005 Jan; 101(1-3):111-25. PubMed ID: 15588898 [TBL] [Abstract][Full Text] [Related]
48. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers. Yuan H; Li B; Liang K; Lou X; Zhang Y Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109 [TBL] [Abstract][Full Text] [Related]
49. Slow and sustained release of active cytokines from self-assembling peptide scaffolds. Gelain F; Unsworth LD; Zhang S J Control Release; 2010 Aug; 145(3):231-9. PubMed ID: 20447427 [TBL] [Abstract][Full Text] [Related]
50. Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration. Yaguchi A; Oshikawa M; Watanabe G; Hiramatsu H; Uchida N; Hara C; Kaneko N; Sawamoto K; Muraoka T; Ajioka I Nat Commun; 2021 Nov; 12(1):6623. PubMed ID: 34799548 [TBL] [Abstract][Full Text] [Related]
51. Fabrication of nanofibrous electrospun scaffolds from a heterogeneous library of co- and self-assembling peptides. Maleki M; Natalello A; Pugliese R; Gelain F Acta Biomater; 2017 Mar; 51():268-278. PubMed ID: 28093364 [TBL] [Abstract][Full Text] [Related]
52. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. Bhattarai N; Ramay HR; Gunn J; Matsen FA; Zhang M J Control Release; 2005 Apr; 103(3):609-24. PubMed ID: 15820408 [TBL] [Abstract][Full Text] [Related]
53. Design and characterization of hydrogel nanoparticles with tunable network characteristics for sustained release of a VEGF-mimetic peptide. Young DA; Pimentel MB; Lima LD; Custodio AF; Lo WC; Chen SC; Teymour F; Papavasiliou G Biomater Sci; 2017 Sep; 5(10):2079-2092. PubMed ID: 28744527 [TBL] [Abstract][Full Text] [Related]
54. Rational design of multifunctional hetero-hexameric proteins for hydrogel formation and controlled delivery of bioactive molecules. Zhang X; Zhou H; Xie Y; Ren C; Ding D; Long J; Yang Z Adv Healthc Mater; 2014 Nov; 3(11):1804-11. PubMed ID: 24861900 [TBL] [Abstract][Full Text] [Related]
55. Evaluation of in situ injectable hydrogels as controlled release device for ANXA1 derived peptide in wound healing. Del Gaudio P; De Cicco F; Aquino RP; Picerno P; Russo P; Dal Piaz F; Bizzarro V; Belvedere R; Parente L; Petrella A Carbohydr Polym; 2015 Jan; 115():629-35. PubMed ID: 25439941 [TBL] [Abstract][Full Text] [Related]
56. Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels. Song Y; Li Y; Zheng Q; Wu K; Guo X; Wu Y; Yin M; Wu Q; Fu X J Biomater Sci Polym Ed; 2011; 22(4-6):475-87. PubMed ID: 20566041 [TBL] [Abstract][Full Text] [Related]
57. Slow release of molecules in self-assembling peptide nanofiber scaffold. Nagai Y; Unsworth LD; Koutsopoulos S; Zhang S J Control Release; 2006 Sep; 115(1):18-25. PubMed ID: 16962196 [TBL] [Abstract][Full Text] [Related]
58. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides. Roberts D; Rochas C; Saiani A; Miller AF Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490 [TBL] [Abstract][Full Text] [Related]
59. Delivering regenerative cues to the heart: cardiac drug delivery by microspheres and peptide nanofibers. Sy JC; Davis ME J Cardiovasc Transl Res; 2010 Oct; 3(5):461-8. PubMed ID: 20628908 [TBL] [Abstract][Full Text] [Related]
60. Controlled release and entrapment of enantiomers in self-assembling scaffolds composed of beta-sheet peptides. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T Biomacromolecules; 2009 Dec; 10(12):3266-72. PubMed ID: 19904950 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]