These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. CYFIP1 coordinates mRNA translation and cytoskeleton remodeling to ensure proper dendritic spine formation. De Rubeis S; Pasciuto E; Li KW; Fernández E; Di Marino D; Buzzi A; Ostroff LE; Klann E; Zwartkruis FJ; Komiyama NH; Grant SG; Poujol C; Choquet D; Achsel T; Posthuma D; Smit AB; Bagni C Neuron; 2013 Sep; 79(6):1169-82. PubMed ID: 24050404 [TBL] [Abstract][Full Text] [Related]
4. TDP-43 Regulates Coupled Dendritic mRNA Transport-Translation Processes in Co-operation with FMRP and Staufen1. Chu JF; Majumder P; Chatterjee B; Huang SL; Shen CJ Cell Rep; 2019 Dec; 29(10):3118-3133.e6. PubMed ID: 31801077 [TBL] [Abstract][Full Text] [Related]
5. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Napoli I; Mercaldo V; Boyl PP; Eleuteri B; Zalfa F; De Rubeis S; Di Marino D; Mohr E; Massimi M; Falconi M; Witke W; Costa-Mattioli M; Sonenberg N; Achsel T; Bagni C Cell; 2008 Sep; 134(6):1042-54. PubMed ID: 18805096 [TBL] [Abstract][Full Text] [Related]
6. Dynamic duo - FMRP and TDP-43: Regulating common targets, causing different diseases. Ferro D; Yao S; Zarnescu DC Brain Res; 2018 Aug; 1693(Pt A):37-42. PubMed ID: 29715444 [TBL] [Abstract][Full Text] [Related]
7. TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. Wang IF; Wu LS; Chang HY; Shen CK J Neurochem; 2008 May; 105(3):797-806. PubMed ID: 18088371 [TBL] [Abstract][Full Text] [Related]
8. New insights into the regulatory function of CYFIP1 in the context of WAVE- and FMRP-containing complexes. Abekhoukh S; Sahin HB; Grossi M; Zongaro S; Maurin T; Madrigal I; Kazue-Sugioka D; Raas-Rothschild A; Doulazmi M; Carrera P; Stachon A; Scherer S; Drula Do Nascimento MR; Trembleau A; Arroyo I; Szatmari P; Smith IM; Milà M; Smith AC; Giangrande A; Caillé I; Bardoni B Dis Model Mech; 2017 Apr; 10(4):463-474. PubMed ID: 28183735 [TBL] [Abstract][Full Text] [Related]
9. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Lee EK; Kim HH; Kuwano Y; Abdelmohsen K; Srikantan S; Subaran SS; Gleichmann M; Mughal MR; Martindale JL; Yang X; Worley PF; Mattson MP; Gorospe M Nat Struct Mol Biol; 2010 Jun; 17(6):732-9. PubMed ID: 20473314 [TBL] [Abstract][Full Text] [Related]
10. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Hou L; Antion MD; Hu D; Spencer CM; Paylor R; Klann E Neuron; 2006 Aug; 51(4):441-54. PubMed ID: 16908410 [TBL] [Abstract][Full Text] [Related]
11. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. Muddashetty RS; Kelić S; Gross C; Xu M; Bassell GJ J Neurosci; 2007 May; 27(20):5338-48. PubMed ID: 17507556 [TBL] [Abstract][Full Text] [Related]
12. Identification of FMRP-associated mRNAs using yeast three-hybrid system. Zou K; Liu J; Zhu N; Lin J; Liang Q; Brown WT; Shen Y; Zhong N Am J Med Genet B Neuropsychiatr Genet; 2008 Sep; 147B(6):769-77. PubMed ID: 18163424 [TBL] [Abstract][Full Text] [Related]
13. Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Kao DI; Aldridge GM; Weiler IJ; Greenough WT Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15601-6. PubMed ID: 20713728 [TBL] [Abstract][Full Text] [Related]
14. Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation. Nalavadi VC; Muddashetty RS; Gross C; Bassell GJ J Neurosci; 2012 Feb; 32(8):2582-7. PubMed ID: 22357842 [TBL] [Abstract][Full Text] [Related]
15. Neurodegeneration-associated TDP-43 interacts with fragile X mental retardation protein (FMRP)/Staufen (STAU1) and regulates SIRT1 expression in neuronal cells. Yu Z; Fan D; Gui B; Shi L; Xuan C; Shan L; Wang Q; Shang Y; Wang Y J Biol Chem; 2012 Jun; 287(27):22560-72. PubMed ID: 22584570 [TBL] [Abstract][Full Text] [Related]
16. Disruption of GpI mGluR-Dependent Cav2.3 Translation in a Mouse Model of Fragile X Syndrome. Gray EE; Murphy JG; Liu Y; Trang I; Tabor GT; Lin L; Hoffman DA J Neurosci; 2019 Sep; 39(38):7453-7464. PubMed ID: 31350260 [TBL] [Abstract][Full Text] [Related]
17. Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse. Filippini A; Bonini D; Lacoux C; Pacini L; Zingariello M; Sancillo L; Bosisio D; Salvi V; Mingardi J; La Via L; Zalfa F; Bagni C; Barbon A RNA Biol; 2017 Nov; 14(11):1580-1591. PubMed ID: 28640668 [TBL] [Abstract][Full Text] [Related]
18. A novel role of fragile X mental retardation protein in pre-mRNA alternative splicing through RNA-binding protein 14. Zhou LT; Ye SH; Yang HX; Zhou YT; Zhao QH; Sun WW; Gao MM; Yi YH; Long YS Neuroscience; 2017 May; 349():64-75. PubMed ID: 28257890 [TBL] [Abstract][Full Text] [Related]
19. Tracking the Fragile X Mental Retardation Protein in a Highly Ordered Neuronal RiboNucleoParticles Population: A Link between Stalled Polyribosomes and RNA Granules. El Fatimy R; Davidovic L; Tremblay S; Jaglin X; Dury A; Robert C; De Koninck P; Khandjian EW PLoS Genet; 2016 Jul; 12(7):e1006192. PubMed ID: 27462983 [TBL] [Abstract][Full Text] [Related]
20. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Nakamoto M; Nalavadi V; Epstein MP; Narayanan U; Bassell GJ; Warren ST Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15537-42. PubMed ID: 17881561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]