These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 27519090)

  • 1. Thin absorber extreme ultraviolet photomask based on Ni-TaN nanocomposite material.
    Hay D; Bagge P; Khaw I; Sun L; Wood O; Chen Y; Kim RH; Qi ZJ; Shi Z
    Opt Lett; 2016 Aug; 41(16):3791-4. PubMed ID: 27519090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary mask designs with single- and double-layer absorber stacks for extreme ultraviolet lithography and actinic inspection.
    Park S; Lim JD; Peranantham P; Kang HY; Hwangbo CK; Lee S; Kim SS
    Appl Opt; 2014 Feb; 53(4):A42-7. PubMed ID: 24514247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical performance of extreme ultraviolet lithography mask with an indium tin oxide absorber.
    Kang HY; Park S; Hwangbo CK; Seo HS; Kim SS; Cho HK
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3330-3. PubMed ID: 22849118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast mask model for extreme ultraviolet lithography with a slanted absorber sidewall.
    Zhang Z; Li S; Wang X; Cheng W
    Appl Opt; 2021 Jul; 60(20):5776-5782. PubMed ID: 34263796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refined extreme ultraviolet mask stack model.
    Makhotkin IA; Wu M; Soltwisch V; Scholze F; Philipsen V
    J Opt Soc Am A Opt Image Sci Vis; 2021 Apr; 38(4):498-503. PubMed ID: 33798178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Metal Absorber Materials for Beyond Extreme Ultraviolet Lithography.
    Hong S; Kim JS; Lee JU; Lee SM; Kim JH; Ahn J
    J Nanosci Nanotechnol; 2015 Nov; 15(11):8652-5. PubMed ID: 26726569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extreme Ultraviolet Multilayer Defect Compensation in Computational Lithography.
    Kim SK
    J Nanosci Nanotechnol; 2016 May; 16(5):5415-9. PubMed ID: 27483941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast rigorous mask model for extreme ultraviolet lithography.
    Zhang Z; Li S; Wang X; Cheng W
    Appl Opt; 2020 Aug; 59(24):7376-7389. PubMed ID: 32902506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical constants and absorption properties of Te and TeO thin films in the 13-14 nm spectral range.
    Rodríguez-de Marcos LV; Kalaiselvi SMP; Leong OB; Das PK; Breese MBH; Rusydi A
    Opt Express; 2020 Apr; 28(9):12922-12935. PubMed ID: 32403778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corrective finishing of extreme ultraviolet photomask blanks by precessed bonnet polisher.
    Beaucamp A; Namba Y; Charlton P
    Appl Opt; 2014 May; 53(14):3075-80. PubMed ID: 24922029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective etching of SnO2 absorber in binary mask structure for extreme ultra-violet lithography.
    Lee SJ; Jung CY; Park SJ; Hwangbo CK; Seo HS; Kim SS; Lee NE
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3334-40. PubMed ID: 22849119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of a 100 × 100 mm
    Nam KB; Hu Q; Yeo JH; Kim MJ; Yoo JB
    Nanoscale Adv; 2022 Sep; 4(18):3824-3831. PubMed ID: 36133349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on ZrSi
    Wi SJ; Kim WJ; Kim H; Jeong D; Lee DG; Choi J; Cho SJ; Yu L; Ahn J
    Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full field analysis of critical dimension uniformity due to focal variation for contact features in extreme ultraviolet lithography.
    Kuo HF; Frederick
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2630-4. PubMed ID: 24745274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actinic microscope for extreme ultraviolet lithography photomask inspection and review.
    Goldstein M; Naulleau P
    Opt Express; 2012 Jul; 20(14):15752-68. PubMed ID: 22772266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in situ method using a Y-type optical fiber for measuring the thickness of the carbon contamination layer on the surface of an extreme ultraviolet mirror.
    Ichimaru S; Hatayama M
    Rev Sci Instrum; 2020 Nov; 91(11):113101. PubMed ID: 33261426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Study of Extreme Ultraviolet Vote-Taking Lithography for Defect Repair.
    Kim SK
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4994-4997. PubMed ID: 32126688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet cleaning of Ta-based extreme ultraviolet photomasks at room temperature.
    Park J; Choi W; Kim J
    Nanotechnology; 2024 Feb; 35(20):. PubMed ID: 38330452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic layer etching of Sn by surface modification with H and Cl radicals.
    Kim DS; Jang YJ; Kim YE; Gil HS; Jeong BH; Yeom GY
    Nanotechnology; 2022 Nov; 34(3):. PubMed ID: 36223734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.