BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 27519271)

  • 1. Investigating mitochondrial redox state using NADH and NADPH autofluorescence.
    Blacker TS; Duchen MR
    Free Radic Biol Med; 2016 Nov; 100():53-65. PubMed ID: 27519271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM.
    Blacker TS; Mann ZF; Gale JE; Ziegler M; Bain AJ; Szabadkai G; Duchen MR
    Nat Commun; 2014 May; 5():3936. PubMed ID: 24874098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells.
    Circu ML; Maloney RE; Aw TY
    Antioxid Redox Signal; 2011 Jun; 14(11):2151-62. PubMed ID: 21083422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism.
    Goodman RP; Calvo SE; Mootha VK
    J Biol Chem; 2018 May; 293(20):7508-7516. PubMed ID: 29514978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H.
    Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A
    Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyridine Dinucleotides from Molecules to Man.
    Fessel JP; Oldham WM
    Antioxid Redox Signal; 2018 Jan; 28(3):180-212. PubMed ID: 28635300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADH Autofluorescence-A Marker on its Way to Boost Bioenergetic Research.
    Schaefer PM; Kalinina S; Rueck A; von Arnim CAF; von Einem B
    Cytometry A; 2019 Jan; 95(1):34-46. PubMed ID: 30211978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Profiling of Live Cancer Tissues Using NAD(P)H Fluorescence Lifetime Imaging.
    Blacker TS; Sewell MDE; Szabadkai G; Duchen MR
    Methods Mol Biol; 2019; 1928():365-387. PubMed ID: 30725465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Cellular Redox State Using NAD(P)H Fluorescence Intensity and Lifetime.
    Blacker TS; Berecz T; Duchen MR; Szabadkai G
    Bio Protoc; 2017 Jan; 7(2):. PubMed ID: 28286806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ.
    Wakita M; Nishimura G; Tamura M
    J Biochem; 1995 Dec; 118(6):1151-60. PubMed ID: 8720129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Assessment of mitochondrial metabolic oxidative state in living cardiomyocytes with spectrally-resolved fluorescence lifetime spectroscopy of NAD(P)H].
    Cheng Y; Ren M; Niu Y; Qiao J; Aneba S; Chorvat D; Chorvatova A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1191-200. PubMed ID: 20095467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diquat-induced cellular pyridine nucleotide redox changes and alteration of metabolic enzyme activities in colonic carcinoma cells.
    Circu ML; Maloney RE; Aw TY
    Chem Biol Interact; 2017 Feb; 264():43-51. PubMed ID: 28108222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe?
    Koju N; Qin ZH; Sheng R
    Acta Pharmacol Sin; 2022 Aug; 43(8):1889-1904. PubMed ID: 35017669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response.
    Rocheleau JV; Head WS; Piston DW
    J Biol Chem; 2004 Jul; 279(30):31780-7. PubMed ID: 15148320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular NADH and NADPH Conformation as a Real-Time Fluorescence-Based Metabolic Indicator under Pressurized Conditions.
    Heidelman M; Dhakal B; Gikunda M; Silva KPT; Risal L; Rodriguez AI; Abe F; Urayama P
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualizing subcellular changes in the NAD(H) pool size versus redox state using fluorescence lifetime imaging microscopy of NADH.
    Song A; Zhao N; Hilpert DC; Perry C; Baur JA; Wallace DC; Schaefer PM
    Commun Biol; 2024 Apr; 7(1):428. PubMed ID: 38594590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular redox imbalance on the crossroad between mitochondrial dysfunction, senescence, and proliferation.
    Bakalova R; Aoki I; Zhelev Z; Higashi T
    Redox Biol; 2022 Jul; 53():102337. PubMed ID: 35584568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
    Hou J; Lages NF; Oldiges M; Vemuri GN
    Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.