These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27519272)

  • 21. The GIRK1 subunit potentiates G protein activation of cardiac GIRK1/4 hetero-tetramers.
    Touhara KK; Wang W; MacKinnon R
    Elife; 2016 Apr; 5():. PubMed ID: 27074664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population.
    Yamada K; Iwayama Y; Toyota T; Ohnishi T; Ohba H; Maekawa M; Yoshikawa T
    Hum Genet; 2012 Mar; 131(3):443-51. PubMed ID: 21927946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy.
    Lyu C; Mulder J; Barde S; Sahlholm K; Zeberg H; Nilsson J; Århem P; Hökfelt T; Fried K; Shi TJ
    Mol Pain; 2015 Jul; 11():44. PubMed ID: 26199148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced activity of GIRK1-containing heterotetramers is sufficient to affect neuronal functions, including synaptic plasticity and spatial learning and memory.
    Mett A; Karbat I; Tsoory M; Fine S; Iwanir S; Reuveny E
    J Physiol; 2021 Jan; 599(2):521-545. PubMed ID: 33124684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slow modal gating of single G protein-activated K+ channels expressed in Xenopus oocytes.
    Yakubovich D; Pastushenko V; Bitler A; Dessauer CW; Dascal N
    J Physiol; 2000 May; 524 Pt 3(Pt 3):737-55. PubMed ID: 10790155
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutant KCNJ3 and KCNJ5 Potassium Channels as Novel Molecular Targets in Bradyarrhythmias and Atrial Fibrillation.
    Yamada N; Asano Y; Fujita M; Yamazaki S; Inanobe A; Matsuura N; Kobayashi H; Ohno S; Ebana Y; Tsukamoto O; Ishino S; Takuwa A; Kioka H; Yamashita T; Hashimoto N; Zankov DP; Shimizu A; Asakura M; Asanuma H; Kato H; Nishida Y; Miyashita Y; Shinomiya H; Naiki N; Hayashi K; Makiyama T; Ogita H; Miura K; Ueshima H; Komuro I; Yamagishi M; Horie M; Kawakami K; Furukawa T; Koizumi A; Kurachi Y; Sakata Y; Minamino T; Kitakaze M; Takashima S
    Circulation; 2019 Apr; 139(18):2157-2169. PubMed ID: 30764634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3.
    Jelacic TM; Kennedy ME; Wickman K; Clapham DE
    J Biol Chem; 2000 Nov; 275(46):36211-6. PubMed ID: 10956667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma.
    Rubinstein M; Peleg S; Berlin S; Brass D; Keren-Raifman T; Dessauer CW; Ivanina T; Dascal N
    J Physiol; 2009 Jul; 587(Pt 14):3473-91. PubMed ID: 19470775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous expression and coupling of G protein-gated inwardly rectifying K+ channels in adult rat sympathetic neurons.
    Ruiz-Velasco V; Ikeda SR
    J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):761-73. PubMed ID: 9824716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A C-terminal peptide of the GIRK1 subunit directly blocks the G protein-activated K+ channel (GIRK) expressed in Xenopus oocytes.
    Luchian T; Dascal N; Dessauer C; Platzer D; Davidson N; Lester HA; Schreibmayer W
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):13-22. PubMed ID: 9409468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A computational model predicts that Gβγ acts at a cleft between channel subunits to activate GIRK1 channels.
    Mahajan R; Ha J; Zhang M; Kawano T; Kozasa T; Logothetis DE
    Sci Signal; 2013 Aug; 6(288):ra69. PubMed ID: 23943609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
    Müllner C; Vorobiov D; Bera AK; Uezono Y; Yakubovich D; Frohnwieser-Steinecker B; Dascal N; Schreibmayer W
    J Gen Physiol; 2000 May; 115(5):547-58. PubMed ID: 10779313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutual action by Gγ and Gβ for optimal activation of GIRK channels in a channel subunit-specific manner.
    Tabak G; Keren-Raifman T; Kahanovitch U; Dascal N
    Sci Rep; 2019 Jan; 9(1):508. PubMed ID: 30679535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic variation in the inwardly rectifying K channel subunits KCNJ3 (GIRK1) and KCNJ5 (GIRK4) in patients with sinus node dysfunction.
    Holmegard HN; Theilade J; Benn M; Duno M; Haunso S; Svendsen JH
    Cardiology; 2010; 115(3):176-81. PubMed ID: 20110696
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The small molecule GAT1508 activates brain-specific GIRK1/2 channel heteromers and facilitates conditioned fear extinction in rodents.
    Xu Y; Cantwell L; Molosh AI; Plant LD; Gazgalis D; Fitz SD; Dustrude ET; Yang Y; Kawano T; Garai S; Noujaim SF; Shekhar A; Logothetis DE; Thakur GA
    J Biol Chem; 2020 Mar; 295(11):3614-3634. PubMed ID: 31953327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of G-protein-activated inwardly rectifying K+ channels by the selective norepinephrine reuptake inhibitors atomoxetine and reboxetine.
    Kobayashi T; Washiyama K; Ikeda K
    Neuropsychopharmacology; 2010 Jun; 35(7):1560-9. PubMed ID: 20393461
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consequences of somatic mutations of GIRK1 detected in primary malign tumors on expression and function of G-protein activated, inwardly rectifying, K
    Pelzmann B; Hatab A; Scheruebel S; Langthaler S; Rienmueller T; Sokolowski A; Gorischek A; Platzer D; Zorn-Pauly K; Jahn SW; Bauernhofer T; Schreibmayer W
    Front Oncol; 2022; 12():998907. PubMed ID: 36483038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GIRK1-mediated inwardly rectifying potassium current suppresses the epileptiform burst activities and the potential antiepileptic effect of ML297.
    Huang Y; Zhang Y; Kong S; Zang K; Jiang S; Wan L; Chen L; Wang G; Jiang M; Wang X; Hu J; Wang Y
    Biomed Pharmacother; 2018 May; 101():362-370. PubMed ID: 29499411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Associations between KCNJ6 (GIRK2) gene polymorphisms and pain-related phenotypes.
    Bruehl S; Denton JS; Lonergan D; Koran ME; Chont M; Sobey C; Fernando S; Bush WS; Mishra P; Thornton-Wells TA
    Pain; 2013 Dec; 154(12):2853-2859. PubMed ID: 23994450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels.
    Kennedy ME; Nemec J; Corey S; Wickman K; Clapham DE
    J Biol Chem; 1999 Jan; 274(4):2571-82. PubMed ID: 9891030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.