These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 27519689)
1. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Herrmann MM; Barth S; Greve B; Schumann KM; Bartels A; Weissert R Dis Model Mech; 2016 Oct; 9(10):1211-1220. PubMed ID: 27519689 [TBL] [Abstract][Full Text] [Related]
2. Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE. Eltayeb S; Berg AL; Lassmann H; Wallström E; Nilsson M; Olsson T; Ericsson-Dahlstrand A; Sunnemark D J Neuroinflammation; 2007 May; 4():14. PubMed ID: 17484785 [TBL] [Abstract][Full Text] [Related]
3. VPAC1 receptor (Vipr1)-deficient mice exhibit ameliorated experimental autoimmune encephalomyelitis, with specific deficits in the effector stage. Abad C; Jayaram B; Becquet L; Wang Y; O'Dorisio MS; Waschek JA; Tan YV J Neuroinflammation; 2016 Jun; 13(1):169. PubMed ID: 27357191 [TBL] [Abstract][Full Text] [Related]
4. IFN-inducible protein 10/CXC chemokine ligand 10-independent induction of experimental autoimmune encephalomyelitis. Klein RS; Izikson L; Means T; Gibson HD; Lin E; Sobel RA; Weiner HL; Luster AD J Immunol; 2004 Jan; 172(1):550-9. PubMed ID: 14688366 [TBL] [Abstract][Full Text] [Related]
5. Clinicopathological study of a myelin oligodendrocyte glycoprotein-induced demyelinating disease in LEW.1AV1 rats. Sakuma H; Kohyama K; Park IK; Miyakoshi A; Tanuma N; Matsumoto Y Brain; 2004 Oct; 127(Pt 10):2201-13. PubMed ID: 15282218 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the encephalitogenic immune response in a model of multiple sclerosis. de Graaf KL; Barth S; Herrmann MM; Storch MK; Wiesmüller KH; Weissert R Eur J Immunol; 2008 Jan; 38(1):299-308. PubMed ID: 18050272 [TBL] [Abstract][Full Text] [Related]
7. High interleukin-10 expression within the central nervous system may be important for initiation of recovery of Dark Agouti rats from experimental autoimmune encephalomyelitis. Blaževski J; Petković F; Momčilović M; Jevtic B; Miljković D; Mostarica Stojković M Immunobiology; 2013 Sep; 218(9):1192-9. PubMed ID: 23664544 [TBL] [Abstract][Full Text] [Related]
8. Early axonal damage and progressive myelin pathology define the kinetics of CNS histopathology in a mouse model of multiple sclerosis. Recks MS; Stormanns ER; Bader J; Arnhold S; Addicks K; Kuerten S Clin Immunol; 2013 Oct; 149(1):32-45. PubMed ID: 23899992 [TBL] [Abstract][Full Text] [Related]
9. A mushroom extract Piwep from Phellinus igniarius ameliorates experimental autoimmune encephalomyelitis by inhibiting immune cell infiltration in the spinal cord. Li L; Wu G; Choi BY; Jang BG; Kim JH; Sung GH; Cho JY; Suh SW; Park HJ Biomed Res Int; 2014; 2014():218274. PubMed ID: 24592383 [TBL] [Abstract][Full Text] [Related]
10. Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis. Abdul-Majid KB; Stefferl A; Bourquin C; Lassmann H; Linington C; Olsson T; Kleinau S; Harris RA Scand J Immunol; 2002 Jan; 55(1):70-81. PubMed ID: 11841694 [TBL] [Abstract][Full Text] [Related]
11. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis. Zheng H; Zhang H; Liu F; Qi Y; Jiang H Immunol Lett; 2014; 157(1-2):38-44. PubMed ID: 24220208 [TBL] [Abstract][Full Text] [Related]
12. Lentivirus-mediated estrogen receptor α overexpression in the central nervous system ameliorates experimental autoimmune encephalomyelitis in mice. Hu X; Qin X Int J Mol Med; 2013 May; 31(5):1209-21. PubMed ID: 23525227 [TBL] [Abstract][Full Text] [Related]
13. Tissue Transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. van Strien ME; de Vries HE; Chrobok NL; Bol JGJM; Breve JJP; van der Pol SMP; Kooij G; van Buul JD; Karpuj M; Steinman L; Wilhelmus MM; Sestito C; Drukarch B; Van Dam AM Brain Behav Immun; 2015 Nov; 50():141-154. PubMed ID: 26133787 [TBL] [Abstract][Full Text] [Related]
14. Endogenous opioid inhibition of proliferation of T and B cell subpopulations in response to immunization for experimental autoimmune encephalomyelitis. McLaughlin PJ; McHugh DP; Magister MJ; Zagon IS BMC Immunol; 2015 Apr; 16():24. PubMed ID: 25906771 [TBL] [Abstract][Full Text] [Related]
15. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain. Skundric DS; Huston K; Shaw M; Tse HY; Raine CS Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038 [TBL] [Abstract][Full Text] [Related]
16. CXCL12 expression within the CNS contributes to the resistance against experimental autoimmune encephalomyelitis in Albino Oxford rats. Miljković D; Stanojević Z; Momcilović M; Odoardi F; Flügel A; Mostarica-Stojković M Immunobiology; 2011 Sep; 216(9):979-87. PubMed ID: 21601937 [TBL] [Abstract][Full Text] [Related]
17. MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE. Mony JT; Khorooshi R; Owens T Mult Scler; 2014 Sep; 20(10):1312-21. PubMed ID: 24552747 [TBL] [Abstract][Full Text] [Related]
19. RGS10 deficiency ameliorates the severity of disease in experimental autoimmune encephalomyelitis. Lee JK; Kannarkat GT; Chung J; Joon Lee H; Graham KL; Tansey MG J Neuroinflammation; 2016 Feb; 13():24. PubMed ID: 26831924 [TBL] [Abstract][Full Text] [Related]
20. Fas has a crucial role in the progression of experimental autoimmune encephalomyelitis. Okuda Y; Bernard CC; Fujimura H; Yanagihara T; Sakoda S Mol Immunol; 1998 Apr; 35(5):317-26. PubMed ID: 9747891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]