These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1201 related articles for article (PubMed ID: 27520031)
1. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
2. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C; Zhou Z; Cai H; Chen Z; Xu H J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352 [TBL] [Abstract][Full Text] [Related]
3. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413 [TBL] [Abstract][Full Text] [Related]
4. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Zhu X; Tan Z; Xu H; Chen J; Tang J; Zhang X Metab Eng; 2014 Jul; 24():87-96. PubMed ID: 24831708 [TBL] [Abstract][Full Text] [Related]
5. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Sánchez AM; Bennett GN; San KY Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771 [TBL] [Abstract][Full Text] [Related]
6. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Wang Q; Chen X; Yang Y; Zhao X Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085 [TBL] [Abstract][Full Text] [Related]
7. Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648 [TBL] [Abstract][Full Text] [Related]
8. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765 [TBL] [Abstract][Full Text] [Related]
9. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes. Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K Appl Environ Microbiol; 2015 Feb; 81(3):929-37. PubMed ID: 25416770 [TBL] [Abstract][Full Text] [Related]
10. Escherichia coli yjjPB genes encode a succinate transporter important for succinate production. Fukui K; Nanatani K; Hara Y; Yamakami S; Yahagi D; Chinen A; Tokura M; Abe K Biosci Biotechnol Biochem; 2017 Sep; 81(9):1837-1844. PubMed ID: 28673128 [TBL] [Abstract][Full Text] [Related]
11. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Li Y; Cong H; Liu B; Song J; Sun X; Zhang J; Yang Q Antonie Van Leeuwenhoek; 2016 Sep; 109(9):1185-97. PubMed ID: 27255137 [TBL] [Abstract][Full Text] [Related]
13. Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Litsanov B; Brocker M; Bott M Appl Environ Microbiol; 2012 May; 78(9):3325-37. PubMed ID: 22389371 [TBL] [Abstract][Full Text] [Related]
14. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Zhu N; Xia H; Yang J; Zhao X; Chen T Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861 [TBL] [Abstract][Full Text] [Related]
16. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696 [TBL] [Abstract][Full Text] [Related]
17. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Lin H; San KY; Bennett GN Appl Microbiol Biotechnol; 2005 Jun; 67(4):515-23. PubMed ID: 15565333 [TBL] [Abstract][Full Text] [Related]
18. Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Sánchez AM; Bennett GN; San KY Metab Eng; 2005 May; 7(3):229-39. PubMed ID: 15885621 [TBL] [Abstract][Full Text] [Related]
19. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli. Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774 [TBL] [Abstract][Full Text] [Related]
20. Enhanced succinate production from glycerol by engineered Escherichia coli strains. Li Q; Wu H; Li Z; Ye Q Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]