These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27520482)

  • 1. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands.
    Gliksman D; Rey A; Seligmann R; Dumbur R; Sperling O; Navon Y; Haenel S; De Angelis P; Arnone JA; Grünzweig JM
    Glob Chang Biol; 2017 Apr; 23(4):1564-1574. PubMed ID: 27520482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunlight Doubles Aboveground Carbon Loss in a Seasonally Dry Woodland in Patagonia.
    Berenstecher P; Vivanco L; Pérez LI; Ballaré CL; Austin AT
    Curr Biol; 2020 Aug; 30(16):3243-3251.e3. PubMed ID: 32619488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effects of environmental factors on litter decomposition in arid and semi-arid regions: A review].
    Wang XY; Zhao XY; Li YL; Lian J; Qu H; Yue XF
    Ying Yong Sheng Tai Xue Bao; 2013 Nov; 24(11):3300-10. PubMed ID: 24564163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desert leaf litter decay: Coupling of microbial respiration, water-soluble fractions and photodegradation.
    Day TA; Bliss MS; Tomes AR; Ruhland CT; Guénon R
    Glob Chang Biol; 2018 Nov; 24(11):5454-5470. PubMed ID: 30194795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early exposure to UV radiation overshadowed by precipitation and litter quality as drivers of decomposition in the northern Chihuahuan Desert.
    Hewins DB; Lee H; Barnes PW; McDowell NG; Pockman WT; Rahn T; Throop HL
    PLoS One; 2019; 14(2):e0210470. PubMed ID: 30716078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodegradation influences litter decomposition rate in a humid tropical ecosystem, Brazil.
    Marinho OA; Martinelli LA; Duarte-Neto PJ; Mazzi EA; King JY
    Sci Total Environ; 2020 May; 715():136601. PubMed ID: 32041036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation.
    Austin AT; Vivanco L
    Nature; 2006 Aug; 442(7102):555-8. PubMed ID: 16885982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation.
    Wang J; Liu L; Wang X; Chen Y
    Glob Chang Biol; 2015 May; 21(5):2095-104. PubMed ID: 25418963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition.
    Joly FX; Kurupas KL; Throop HL
    Ecology; 2017 Sep; 98(9):2255-2260. PubMed ID: 28628198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems.
    Austin AT; Méndez MS; Ballaré CL
    Proc Natl Acad Sci U S A; 2016 Apr; 113(16):4392-7. PubMed ID: 27044070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Forest litter decomposition and its responses to global climate change].
    Yang WQ; Deng RJ; Zhang J
    Ying Yong Sheng Tai Xue Bao; 2007 Dec; 18(12):2889-95. PubMed ID: 18333472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual role of lignin in plant litter decomposition in terrestrial ecosystems.
    Austin AT; Ballaré CL
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4618-22. PubMed ID: 20176940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose-responses for solar radiation exposure reveal high sensitivity of microbial decomposition to changes in plant litter quality that occur during photodegradation.
    Méndez MS; Ballaré CL; Austin AT
    New Phytol; 2022 Sep; 235(5):2022-2033. PubMed ID: 35579884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial functional diversity associated with plant litter decomposition along a climatic gradient.
    Sherman C; Steinberger Y
    Microb Ecol; 2012 Aug; 64(2):399-415. PubMed ID: 22430507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate.
    Baker NR; Allison SD
    Ecology; 2015 Jul; 96(7):1994-2003. PubMed ID: 26378321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mind the gap: non-biological processes contributing to soil CO2 efflux.
    Rey A
    Glob Chang Biol; 2015 May; 21(5):1752-61. PubMed ID: 25471988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of groundwater-dependent ecosystems to enhance soil biological activity and soil fertility in drylands.
    Torres-García MT; Oyonarte C; Cabello J; Guirado E; Rodríguez-Lozano B; Salinas-Bonillo MJ
    Sci Total Environ; 2022 Jun; 826():154111. PubMed ID: 35218827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feedback interactions between needle litter decomposition and rhizosphere activity.
    Subke JA; Hahn V; Battipaglia G; Linder S; Buchmann N; Cotrufo MF
    Oecologia; 2004 May; 139(4):551-9. PubMed ID: 15042460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.
    Bornman JF; Barnes PW; Robinson SA; Ballaré CL; Flint SD; Caldwell MM
    Photochem Photobiol Sci; 2015 Jan; 14(1):88-107. PubMed ID: 25435216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry.
    Suseela V; Tharayil N
    Glob Chang Biol; 2018 Apr; 24(4):1428-1451. PubMed ID: 28986956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.