These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 27521024)
41. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor. Moon YS; Donzelli BG; Krasnoff SB; McLane H; Griggs MH; Cooke P; Vandenberg JD; Gibson DM; Churchill AC Appl Environ Microbiol; 2008 Jul; 74(14):4366-80. PubMed ID: 18502925 [TBL] [Abstract][Full Text] [Related]
42. A laccase exclusively expressed by Metarhizium anisopliae during isotropic growth is involved in pigmentation, tolerance to abiotic stresses and virulence. Fang W; Fernandes EK; Roberts DW; Bidochka MJ; St Leger RJ Fungal Genet Biol; 2010 Jul; 47(7):602-7. PubMed ID: 20382249 [TBL] [Abstract][Full Text] [Related]
43. Selection of a highly virulent fungal isolate, Metarhizium anisopliae CLO 53, for controlling Hoplia philanthus. Ansari MA; Vestergaard S; Tirry L; Moens M J Invertebr Pathol; 2004 Feb; 85(2):89-96. PubMed ID: 15050838 [TBL] [Abstract][Full Text] [Related]
44. Differential fluctuation in virulence and VOC profiles among different cultures of entomopathogenic fungi. Hussain A; Tian MY; He YR; Lei YY J Invertebr Pathol; 2010 Jul; 104(3):166-71. PubMed ID: 20233596 [TBL] [Abstract][Full Text] [Related]
45. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Dias LP; Pedrini N; Braga GUL; Ferreira PC; Pupin B; Araújo CAS; Corrochano LM; Rangel DEN Fungal Biol; 2020 May; 124(5):263-272. PubMed ID: 32389288 [TBL] [Abstract][Full Text] [Related]
46. Detection and characterisation of pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. Wang C; Typas MA; Butt TM FEMS Microbiol Lett; 2002 Aug; 213(2):251-5. PubMed ID: 12167546 [TBL] [Abstract][Full Text] [Related]
47. An ENA ATPase, MaENA1, of Metarhizium acridum influences the Na(+)-, thermo- and UV-tolerances of conidia and is involved in multiple mechanisms of stress tolerance. Ma Q; Jin K; Peng G; Xia Y Fungal Genet Biol; 2015 Oct; 83():68-77. PubMed ID: 26325214 [TBL] [Abstract][Full Text] [Related]
48. Effect of nutrition on growth and virulence of the entomopathogenic fungus Beauveria bassiana. Safavi SA; Shah FA; Pakdel AK; Reza Rasoulian G; Bandani AR; Butt TM FEMS Microbiol Lett; 2007 May; 270(1):116-23. PubMed ID: 17319877 [TBL] [Abstract][Full Text] [Related]
49. Ultrastructure of Tuta absoluta parasitized eggs and the reproductive potential of females after parasitism by Metarhizium anisopliae. Pires LM; Marques EJ; Wanderley-Teixeira V; Teixeira AA; Alves LC; Alves ES Micron; 2009 Feb; 40(2):255-61. PubMed ID: 18789707 [TBL] [Abstract][Full Text] [Related]
50. The adenylate cyclase gene MaAC is required for virulence and multi-stress tolerance of Metarhizium acridum. Liu S; Peng G; Xia Y BMC Microbiol; 2012 Aug; 12():163. PubMed ID: 22853879 [TBL] [Abstract][Full Text] [Related]
51. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fang W; Pava-ripoll M; Wang S; St Leger R Fungal Genet Biol; 2009 Mar; 46(3):277-85. PubMed ID: 19124083 [TBL] [Abstract][Full Text] [Related]
52. Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Sowjanya Sree K; Padmaja V; Murthy YL Pest Manag Sci; 2008 Feb; 64(2):119-25. PubMed ID: 17935266 [TBL] [Abstract][Full Text] [Related]
53. Influence of growth environment on tolerance to UV-B radiation, germination speed, and morphology of Metarhizium anisopliae var. acridum conidia. Rangel DE; Braga GU; Anderson AJ; Roberts DW J Invertebr Pathol; 2005 Sep; 90(1):55-8. PubMed ID: 16005467 [TBL] [Abstract][Full Text] [Related]
54. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Rangel DE; Braga GU; Fernandes ÉK; Keyser CA; Hallsworth JE; Roberts DW Curr Genet; 2015 Aug; 61(3):383-404. PubMed ID: 25791499 [TBL] [Abstract][Full Text] [Related]
55. Screening of high toxic Metarhizium strain against Plutella xylostella and its marking with green fluorescent protein. Cui Q; Zhang Y; Zang Y; Nong X; Wang G; Zhang Z World J Microbiol Biotechnol; 2014 Oct; 30(10):2767-73. PubMed ID: 25037866 [TBL] [Abstract][Full Text] [Related]
57. Integration of an insecticidal scorpion toxin (BjαIT) gene into Metarhizium acridum enhances fungal virulence towards Locusta migratoria manilensis. Peng G; Xia Y Pest Manag Sci; 2015 Jan; 71(1):58-64. PubMed ID: 25488590 [TBL] [Abstract][Full Text] [Related]
58. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Wang C; St Leger RJ Eukaryot Cell; 2007 May; 6(5):808-16. PubMed ID: 17337634 [TBL] [Abstract][Full Text] [Related]