These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27521292)

  • 1. Competitive sorption of heavy metals by water hyacinth roots.
    Zheng JC; Liu HQ; Feng HM; Li WW; Lam MH; Lam PK; Yu HQ
    Environ Pollut; 2016 Dec; 219():837-845. PubMed ID: 27521292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system.
    El-Gendy AS; Biswas N; Bewtra JK
    Water Environ Res; 2006 Sep; 78(9):951-64. PubMed ID: 17120455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material.
    Zheng JC; Feng HM; Lam MH; Lam PK; Ding YW; Yu HQ
    J Hazard Mater; 2009 Nov; 171(1-3):780-5. PubMed ID: 19596517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes).
    Newete SW; Erasmus BF; Weiersbye IM; Byrne MJ
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20805-20818. PubMed ID: 27475440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting.
    Tereshchenko NN; Akimova EE; Pisarchuk AD; Yunusova TV; Minaeva OM
    Environ Sci Pollut Res Int; 2015 May; 22(9):7147-54. PubMed ID: 25501861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the phytoremediation potential of water hyacinth by FTIR Spectroscopy and ICP-OES for treatment of heavy metal contaminated water.
    Peng H; Wang Y; Tan TL; Chen Z
    Int J Phytoremediation; 2020; 22(9):939-951. PubMed ID: 32529840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.).
    So LM; Chu LM; Wong PK
    Chemosphere; 2003 Sep; 52(9):1499-503. PubMed ID: 12867181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the high molecular weight Cd-binding complex in water hyacinth (Eichhornia crassipes) when exposed to Cd.
    Wu JS; Ho TC; Chien HC; Wu YJ; Lin SM; Juang RH
    J Agric Food Chem; 2008 Jul; 56(14):5806-12. PubMed ID: 18582084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-absorption of Ni and Cd on Eichhornia crassipes root thin film.
    Elfeky SA; Imam H; Alsherbini AA
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):8220-6. PubMed ID: 23702568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth.
    el-Gendy AS
    Int J Phytoremediation; 2008; 10(1):14-30. PubMed ID: 18709929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae) in the Nile Delta, Egypt.
    Ghabbour EA; Davies G; Lam YY; Vozzella ME
    Environ Pollut; 2004 Oct; 131(3):445-51. PubMed ID: 15261408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes).
    Lu X; Gao Y; Luo J; Yan S; Rengel Z; Zhang Z
    J Hazard Mater; 2014 Sep; 280():389-98. PubMed ID: 25194556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of different gadolinium (Gd) complexes from water by
    Kartamihardja AAP; Kumasaka S; Hilfi L; Kameo S; Koyama H; Tsushima Y
    Int J Phytoremediation; 2022; 24(9):893-901. PubMed ID: 34613832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals content in water, water hyacinth and sediments of Lalbagh tank, Bangalore (India).
    Lokeshwari H; Chandrappa GT
    J Environ Sci Eng; 2006 Jul; 48(3):183-8. PubMed ID: 17915781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Batch and continuous removal of arsenic using hyacinth roots.
    Govindaswamy S; Schupp DA; Rock SA
    Int J Phytoremediation; 2011 Jul; 13(6):513-27. PubMed ID: 21972499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the accumulation of contaminants by Cyperus alternifolius, Lemna minor, Eichhornia crassipes, and Canna × generalis in some contaminated aquatic environments.
    Shirinpur-Valadi A; Hatamzadeh A; Sedaghathoor S
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21340-21350. PubMed ID: 31119548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Presence of Cu Facilitates Adsorption of Tetracycline (TC) onto Water Hyacinth Roots.
    Lu X; Tang B; Zhang Q; Liu L; Fan R; Zhang Z
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30208650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper uptake by Eichhornia crassipes exposed at high level concentrations.
    Melignani E; de Cabo LI; Faggi AM
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8307-15. PubMed ID: 25529492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.