BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27521640)

  • 1. Phytoremediation potential of a novel fern, Salvinia cucullata, Roxb. Ex Bory, to pulp and paper mill effluent: Physiological and anatomical response.
    Das S; Mazumdar K
    Chemosphere; 2016 Nov; 163():62-72. PubMed ID: 27521640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaccumulation potential of Aspergillus niger and Aspergillus flavus for removal of heavy metals from paper mill effluent.
    Thippeswamy B; Shivakumar CK; Krishnappa M
    J Environ Biol; 2012 Nov; 33(6):1063-8. PubMed ID: 23741802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper phytoextraction by Salvinia cucullata: biochemical and morphological study.
    Das S; Goswami S
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1363-1371. PubMed ID: 27778270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India.
    Kumari A; Lal B; Rai UN
    Int J Phytoremediation; 2016; 18(6):592-7. PubMed ID: 26442874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of the coalmine effluent.
    Bharti S; Kumar Banerjee T
    Ecotoxicol Environ Saf; 2012 Jul; 81():36-42. PubMed ID: 22571948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical characterization and Bioremediation perspective of textile effluent, dyes and metals by indigenous Bacteria.
    Ali N; Hameed A; Ahmed S
    J Hazard Mater; 2009 May; 164(1):322-8. PubMed ID: 18818017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent.
    Kumar V; Singh J; Chopra AK
    Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies.
    Kumar V; Singh J; Kumar P
    Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal pollution due to coal washery effluent and its decontamination using a macrofungus, Pleurotus ostreatus.
    Vaseem H; Singh VK; Singh MP
    Ecotoxicol Environ Saf; 2017 Nov; 145():42-49. PubMed ID: 28704692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation potential of weeds in heavy metal contaminated soils of the Bassa Industrial Zone of Douala, Cameroon.
    Lum AF; Ngwa ES; Chikoye D; Suh CE
    Int J Phytoremediation; 2014; 16(3):302-19. PubMed ID: 24912226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace element accumulation in Salvinia natans from areas of various land use types.
    Polechońska L; Klink A; Dambiec M
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30242-30251. PubMed ID: 31422538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater.
    Arán DS; Harguinteguy CA; Fernandez-Cirelli A; Pignata ML
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18295-18308. PubMed ID: 28639015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal tolerance in metal hyperaccumulator plant, Salvinia natans.
    Dhir B; Srivastava S
    Bull Environ Contam Toxicol; 2013 Jun; 90(6):720-4. PubMed ID: 23553503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoextraction of heavy metals by potential native plants and their microscopic observation of root growing on stabilised distillery sludge as a prospective tool for in situ phytoremediation of industrial waste.
    Chandra R; Kumar V
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2605-2619. PubMed ID: 27826829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of water fern (
    Kumar V; Kumar P; Singh J; Kumar P
    Int J Phytoremediation; 2020; 22(4):392-403. PubMed ID: 31549516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of Cd, Ni, Pb and Zn by Salvinia minima.
    Iha DS; Bianchini I
    Int J Phytoremediation; 2015; 17(10):929-35. PubMed ID: 25848891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residual pollutants in treated pulp paper mill wastewater and their phytotoxicity and cytotoxicity in Allium cepa.
    Sharma P; Purchase D; Chandra R
    Environ Geochem Health; 2021 May; 43(5):2143-2164. PubMed ID: 33400008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes--a case study at JK Paper mill, Rayagada, India.
    Mishra S; Mohanty M; Pradhan C; Patra HK; Das R; Sahoo S
    Environ Monit Assess; 2013 May; 185(5):4347-59. PubMed ID: 22993029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.