BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 27521939)

  • 21. Removal of biogenic compounds from the post-fermentation effluent in a culture of Chlorella vulgaris.
    Szwarc K; Szwarc D; Zieliński M
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):111-117. PubMed ID: 31037532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Consolidated bioprocessing of wastewater cocktail in an algal biorefinery for enhanced biomass, lipid and lutein production coupled with efficient CO
    De Bhowmick G; Sen R; Sarmah AK
    J Environ Manage; 2019 Dec; 252():109696. PubMed ID: 31629179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of the pollutants' removal and mechanism by microalgae in saline wastewater.
    Vo HNP; Ngo HH; Guo W; Liu Y; Chang SW; Nguyen DD; Nguyen PD; Bui XT; Ren J
    Bioresour Technol; 2019 Mar; 275():44-52. PubMed ID: 30576913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biological fixation of carbon dioxide and biodiesel production using microalgae isolated from sewage waste water.
    Maheshwari N; Krishna PK; Thakur IS; Srivastava S
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27319-27329. PubMed ID: 31317429
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel bioconversions of municipal effluent and CO₂ into protein riched Chlorella vulgaris biomass.
    Li C; Yang H; Li Y; Cheng L; Zhang M; Zhang L; Wang W
    Bioresour Technol; 2013 Mar; 132():171-7. PubMed ID: 23399495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The regulating mechanisms of CO
    Li J; Tang X; Pan K; Zhu B; Li Y; Ma X; Zhao Y
    Chemosphere; 2020 May; 247():125814. PubMed ID: 31927186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nutrient removal from pickle industry wastewater by cultivation of Chlorella pyrenoidosa for lipid production.
    Wan L; Wu Y; Zhang X; Zhang W
    Water Sci Technol; 2019 Jun; 79(11):2166-2174. PubMed ID: 31318354
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of CO₂ bio-mitigation by Chlorella vulgaris.
    Anjos M; Fernandes BD; Vicente AA; Teixeira JA; Dragone G
    Bioresour Technol; 2013 Jul; 139():149-54. PubMed ID: 23648764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous carbon dioxide sequestration and nitrate removal by Chlorella vulgaris and Pseudomonas sp. consortium.
    Yu Q; Yin M; Chen Y; Liu S; Wang S; Li Y; Cui H; Yu D; Ge B; Huang F
    J Environ Manage; 2023 May; 333():117389. PubMed ID: 36758399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.
    Fernández-Linares LC; Guerrero Barajas C; Durán Páramo E; Badillo Corona JA
    Bioresour Technol; 2017 Nov; 244(Pt 1):400-406. PubMed ID: 28783567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods.
    Guo P; Zhang Y; Zhao Y
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29543784
    [No Abstract]   [Full Text] [Related]  

  • 33. Enhanced carbon dioxide fixation of Chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles.
    Ren H; Ni J; Shen M; Zhou D; Sun F; Loke Show P
    Bioresour Technol; 2023 Aug; 382():129176. PubMed ID: 37187334
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.
    Feng Y; Li C; Zhang D
    Bioresour Technol; 2011 Jan; 102(1):101-5. PubMed ID: 20620053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.
    Lee YR; Chen JJ
    Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Granulation, control of bacterial contamination, and enhanced lipid accumulation by driving nutrient starvation in coupled wastewater treatment and Chlorella regularis cultivation.
    Zhou D; Li Y; Yang Y; Wang Y; Zhang C; Wang D
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1531-41. PubMed ID: 25520170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production.
    Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS
    Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increase in lipid productivity and photosynthetic activities during distillery wastewater decolorization by Chlorella vulgaris cultures.
    Soleymani Robati SM; Nosrati M; Ghanati F; Hajnowrouzi A; Grizeau D; Dupré C
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):3339-3351. PubMed ID: 33783589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production.
    Kuo CM; Chen TY; Lin TH; Kao CY; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2015 Oct; 194():326-33. PubMed ID: 26210147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing biolipid production and self-flocculation of Chlorella vulgaris by extracellular polymeric substances from granular sludge with CO
    Liu X; Ji B; Li A
    Water Res; 2023 Jun; 236():119960. PubMed ID: 37054610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.