These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 27522288)

  • 1. Importance of vegetation classes in modeling CH
    Li T; Raivonen M; Alekseychik P; Aurela M; Lohila A; Zheng X; Zhang Q; Wang G; Mammarella I; Rinne J; Yu L; Xie B; Vesala T; Zhang W
    Sci Total Environ; 2016 Dec; 572():1111-1122. PubMed ID: 27522288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-scale simulation of methane emissions from coastal wetlands in China using an improved version of CH4MODwetland.
    Li T; Xie B; Wang G; Zhang W; Zhang Q; Vesala T; Raivonen M
    Sci Total Environ; 2016 Jul; 559():256-267. PubMed ID: 27065445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions.
    Ueyama M; Knox SH; Delwiche KB; Bansal S; Riley WJ; Baldocchi D; Hirano T; McNicol G; Schafer K; Windham-Myers L; Poulter B; Jackson RB; Chang KY; Chen J; Chu H; Desai AR; Gogo S; Iwata H; Kang M; Mammarella I; Peichl M; Sonnentag O; Tuittila ES; Ryu Y; Euskirchen ES; Göckede M; Jacotot A; Nilsson MB; Sachs T
    Glob Chang Biol; 2023 Apr; 29(8):2313-2334. PubMed ID: 36630533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Kljun N; Quinton WL; Treat CC; Sonnentag O
    Glob Chang Biol; 2017 Jun; 23(6):2413-2427. PubMed ID: 27689625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach.
    Hartley IP; Hill TC; Wade TJ; Clement RJ; Moncrieff JB; Prieto-Blanco A; Disney MI; Huntley B; Williams M; Howden NJ; Wookey PA; Baxter R
    Glob Chang Biol; 2015 Oct; 21(10):3712-25. PubMed ID: 25969925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of CH4MOD
    Li T; Zhang Q; Cheng Z; Wang G; Yu L; Zhang W
    J Environ Sci (China); 2017 Jul; 57():356-369. PubMed ID: 28647257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland.
    Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A
    Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction CH4 Emissions from the Wetlands in the Sanjiang Plain of Northeastern China in the 21st Century.
    Li T; Zhang Q; Zhang W; Wang G; Lu Y; Yu L; Zhang R
    PLoS One; 2016; 11(7):e0158872. PubMed ID: 27409586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems.
    Treat CC; Bloom AA; Marushchak ME
    Glob Chang Biol; 2018 Aug; 24(8):3331-3343. PubMed ID: 29569301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent increases in annual, seasonal, and extreme methane fluxes driven by changes in climate and vegetation in boreal and temperate wetland ecosystems.
    Feron S; Malhotra A; Bansal S; Fluet-Chouinard E; McNicol G; Knox SH; Delwiche KB; Cordero RR; Ouyang Z; Zhang Z; Poulter B; Jackson RB
    Glob Chang Biol; 2024 Jan; 30(1):e17131. PubMed ID: 38273508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales.
    Bridgham SD; Cadillo-Quiroz H; Keller JK; Zhuang Q
    Glob Chang Biol; 2013 May; 19(5):1325-46. PubMed ID: 23505021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Annual methane emissions from degraded alpine wetlands in the eastern Tibetan Plateau.
    Zhang H; Yao Z; Ma L; Zheng X; Wang R; Wang K; Liu C; Zhang W; Zhu B; Tang X; Hu Z; Han S
    Sci Total Environ; 2019 Mar; 657():1323-1333. PubMed ID: 30677899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boreal-Arctic wetland methane emissions modulated by warming and vegetation activity.
    Yuan K; Li F; McNicol G; Chen M; Hoyt A; Knox S; Riley WJ; Jackson R; Zhu Q
    Nat Clim Chang; 2024; 14(3):282-288. PubMed ID: 38481421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales.
    Knox SH; Bansal S; McNicol G; Schafer K; Sturtevant C; Ueyama M; Valach AC; Baldocchi D; Delwiche K; Desai AR; Euskirchen E; Liu J; Lohila A; Malhotra A; Melling L; Riley W; Runkle BRK; Turner J; Vargas R; Zhu Q; Alto T; Fluet-Chouinard E; Goeckede M; Melton JR; Sonnentag O; Vesala T; Ward E; Zhang Z; Feron S; Ouyang Z; Alekseychik P; Aurela M; Bohrer G; Campbell DI; Chen J; Chu H; Dalmagro HJ; Goodrich JP; Gottschalk P; Hirano T; Iwata H; Jurasinski G; Kang M; Koebsch F; Mammarella I; Nilsson MB; Ono K; Peichl M; Peltola O; Ryu Y; Sachs T; Sakabe A; Sparks JP; Tuittila ES; Vourlitis GL; Wong GX; Windham-Myers L; Poulter B; Jackson RB
    Glob Chang Biol; 2021 Aug; 27(15):3582-3604. PubMed ID: 33914985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold season emissions dominate the Arctic tundra methane budget.
    Zona D; Gioli B; Commane R; Lindaas J; Wofsy SC; Miller CE; Dinardo SJ; Dengel S; Sweeney C; Karion A; Chang RY; Henderson JM; Murphy PC; Goodrich JP; Moreaux V; Liljedahl A; Watts JD; Kimball JS; Lipson DA; Oechel WC
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):40-5. PubMed ID: 26699476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error characterization of methane fluxes and budgets derived from a long-term comparison of open- and closed-path eddy covariance systems.
    Deventer MJ; Griffis TJ; Roman DT; Kolka RK; Wood JD; Erickson M; Baker JM; Millet DB
    Agric For Meteorol; 2019 Nov; 278():. PubMed ID: 33612901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland.
    Wright EL; Black CR; Turner BL; Sjögersten S
    Glob Chang Biol; 2013 Dec; 19(12):3775-89. PubMed ID: 23873747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.
    Turetsky MR; Kotowska A; Bubier J; Dise NB; Crill P; Hornibrook ER; Minkkinen K; Moore TR; Myers-Smith IH; Nykänen H; Olefeldt D; Rinne J; Saarnio S; Shurpali N; Tuittila ES; Waddington JM; White JR; Wickland KP; Wilmking M
    Glob Chang Biol; 2014 Jul; 20(7):2183-97. PubMed ID: 24777536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland.
    Zhao J; Peichl M; Nilsson MB
    Glob Chang Biol; 2016 Feb; 22(2):750-62. PubMed ID: 26452333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations.
    Miller SM; Miller CE; Commane R; Chang RY; Dinardo SJ; Henderson JM; Karion A; Lindaas J; Melton JR; Miller JB; Sweeney C; Wofsy SC; Michalak AM
    Global Biogeochem Cycles; 2016 Oct; 30(10):1441-1453. PubMed ID: 28066129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.