These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27522946)

  • 1. Proteins of well-defined structures can be designed without backbone readjustment by a statistical model.
    Zhou X; Xiong P; Wang M; Ma R; Zhang J; Chen Q; Liu H
    J Struct Biol; 2016 Dec; 196(3):350-357. PubMed ID: 27522946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Protein Design Under a Given Backbone Structure with the ABACUS Statistical Energy Function.
    Xiong P; Chen Q; Liu H
    Methods Mol Biol; 2017; 1529():217-226. PubMed ID: 27914053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution protein design with backbone freedom.
    Harbury PB; Plecs JJ; Tidor B; Alber T; Kim PS
    Science; 1998 Nov; 282(5393):1462-7. PubMed ID: 9822371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein design with a comprehensive statistical energy function and boosted by experimental selection for foldability.
    Xiong P; Wang M; Zhou X; Zhang T; Zhang J; Chen Q; Liu H
    Nat Commun; 2014 Oct; 5():5330. PubMed ID: 25345468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust folding of a de novo designed ideal protein even with most of the core mutated to valine.
    Koga R; Yamamoto M; Kosugi T; Kobayashi N; Sugiki T; Fujiwara T; Koga N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31149-31156. PubMed ID: 33229587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. De novo backbone scaffolds for protein design.
    MacDonald JT; Maksimiak K; Sadowski MI; Taylor WR
    Proteins; 2010 Apr; 78(5):1311-25. PubMed ID: 20017215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of a de novo protein from a designed combinatorial library.
    Wei Y; Kim S; Fela D; Baum J; Hecht MH
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13270-3. PubMed ID: 14593201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transferable coarse-grained potential for de novo protein folding and design.
    Coluzza I
    PLoS One; 2014; 9(12):e112852. PubMed ID: 25436908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins.
    Dantas G; Kuhlman B; Callender D; Wong M; Baker D
    J Mol Biol; 2003 Sep; 332(2):449-60. PubMed ID: 12948494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.
    Spassov VZ; Yan L; Flook PK
    Protein Sci; 2007 Mar; 16(3):494-506. PubMed ID: 17242380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein folding using fragment assembly and physical energy function.
    Kim SY; Lee W; Lee J
    J Chem Phys; 2006 Nov; 125(19):194908. PubMed ID: 17129168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-based design of novel protein structures.
    Butterfoss GL; Kuhlman B
    Annu Rev Biophys Biomol Struct; 2006; 35():49-65. PubMed ID: 16689627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A backbone-centred energy function of neural networks for protein design.
    Huang B; Xu Y; Hu X; Liu Y; Liao S; Zhang J; Huang C; Hong J; Chen Q; Liu H
    Nature; 2022 Feb; 602(7897):523-528. PubMed ID: 35140398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo protein design. II. Plasticity in sequence space.
    Koehl P; Levitt M
    J Mol Biol; 1999 Nov; 293(5):1183-93. PubMed ID: 10547294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple model of backbone flexibility improves modeling of side-chain conformational variability.
    Friedland GD; Linares AJ; Smith CA; Kortemme T
    J Mol Biol; 2008 Jul; 380(4):757-74. PubMed ID: 18547586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational protein design with electrostatic focusing: experimental characterization of a conditionally folded helical domain with a reduced amino acid alphabet.
    Suárez-Diez M; Pujol AM; Matzapetakis M; Jaramillo A; Iranzo O
    Biotechnol J; 2013 Jul; 8(7):855-64. PubMed ID: 23788466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TetraBASE: A Side Chain-Independent Statistical Energy for Designing Realistically Packed Protein Backbones.
    Chu H; Liu H
    J Chem Inf Model; 2018 Feb; 58(2):430-442. PubMed ID: 29314837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How similar must a template protein be for homology modeling by side-chain packing methods?
    Chung SY; Subbiah S
    Pac Symp Biocomput; 1996; ():126-41. PubMed ID: 9390228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A consistent set of statistical potentials for quantifying local side-chain and backbone interactions.
    Fang Q; Shortle D
    Proteins; 2005 Jul; 60(1):90-6. PubMed ID: 15852305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo design of cavity-containing proteins with a backbone-centered neural network energy function.
    Xu Y; Hu X; Wang C; Liu Y; Chen Q; Liu H
    Structure; 2024 Apr; 32(4):424-432.e4. PubMed ID: 38325370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.