These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Asymmetric protein design from conserved supersecondary structures. ElGamacy M; Coles M; Lupas A J Struct Biol; 2018 Dec; 204(3):380-387. PubMed ID: 30558718 [TBL] [Abstract][Full Text] [Related]
23. Computer simulations of de novo designed helical proteins. Sikorski A; Kolinski A; Skolnick J Biophys J; 1998 Jul; 75(1):92-105. PubMed ID: 9649370 [TBL] [Abstract][Full Text] [Related]
24. Emergence of highly designable protein-backbone conformations in an off-lattice model. Miller J; Zeng C; Wingreen NS; Tang C Proteins; 2002 Jun; 47(4):506-12. PubMed ID: 12001229 [TBL] [Abstract][Full Text] [Related]
25. Emergence of preferred structures in a simple model of protein folding. Li H; Helling R; Tang C; Wingreen N Science; 1996 Aug; 273(5275):666-9. PubMed ID: 8662562 [TBL] [Abstract][Full Text] [Related]
26. Hydrophobic core malleability of a de novo designed three-helix bundle protein. Walsh ST; Sukharev VI; Betz SF; Vekshin NL; DeGrado WF J Mol Biol; 2001 Jan; 305(2):361-73. PubMed ID: 11124911 [TBL] [Abstract][Full Text] [Related]
27. Incorporating knowledge-based biases into an energy-based side-chain modeling method: application to comparative modeling of protein structure. Mendes J; Nagarajaram HA; Soares CM; Blundell TL; Carrondo MA Biopolymers; 2001 Aug; 59(2):72-86. PubMed ID: 11373721 [TBL] [Abstract][Full Text] [Related]
28. Accurate computer-based design of a new backbone conformation in the second turn of protein L. Kuhlman B; O'Neill JW; Kim DE; Zhang KY; Baker D J Mol Biol; 2002 Jan; 315(3):471-7. PubMed ID: 11786026 [TBL] [Abstract][Full Text] [Related]
29. Recapitulation of protein family divergence using flexible backbone protein design. Saunders CT; Baker D J Mol Biol; 2005 Feb; 346(2):631-44. PubMed ID: 15670610 [TBL] [Abstract][Full Text] [Related]
30. Computational protein design with side-chain conformational entropy. Sciretti D; Bruscolini P; Pelizzola A; Pretti M; Jaramillo A Proteins; 2009 Jan; 74(1):176-91. PubMed ID: 18618711 [TBL] [Abstract][Full Text] [Related]
31. Statistical theory of protein sequence design by random mutation. Bhattacherjee A; Biswas P J Phys Chem B; 2009 Apr; 113(16):5520-7. PubMed ID: 19323540 [TBL] [Abstract][Full Text] [Related]
32. Design of a rotamer library for coarse-grained models in protein-folding simulations. Larriva M; Rey A J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725 [TBL] [Abstract][Full Text] [Related]
33. Protein design simulations suggest that side-chain conformational entropy is not a strong determinant of amino acid environmental preferences. Hu X; Kuhlman B Proteins; 2006 Mar; 62(3):739-48. PubMed ID: 16317667 [TBL] [Abstract][Full Text] [Related]
34. Impact of local and non-local interactions on thermodynamics and kinetics of protein folding. Abkevich VI; Gutin AM; Shakhnovich EI J Mol Biol; 1995 Sep; 252(4):460-71. PubMed ID: 7563065 [TBL] [Abstract][Full Text] [Related]
35. Prediction of protein-protein interface sequence diversity using flexible backbone computational protein design. Humphris EL; Kortemme T Structure; 2008 Dec; 16(12):1777-88. PubMed ID: 19081054 [TBL] [Abstract][Full Text] [Related]
36. Synthetic beta-solenoid proteins with the fragment-free computational design of a beta-hairpin extension. MacDonald JT; Kabasakal BV; Godding D; Kraatz S; Henderson L; Barber J; Freemont PS; Murray JW Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10346-51. PubMed ID: 27573845 [TBL] [Abstract][Full Text] [Related]
37. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space. Fromer M; Yanover C Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998 [TBL] [Abstract][Full Text] [Related]
38. Effective scoring function for protein sequence design. Liang S; Grishin NV Proteins; 2004 Feb; 54(2):271-81. PubMed ID: 14696189 [TBL] [Abstract][Full Text] [Related]
39. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins. Láng A; Csizmadia IG; Perczel A Proteins; 2005 Feb; 58(3):571-88. PubMed ID: 15616985 [TBL] [Abstract][Full Text] [Related]
40. Structure-based design of model proteins. Banavar JR; Cieplak M; Maritan A; Nadig G; Seno F; Vishveshwara S Proteins; 1998 Apr; 31(1):10-20. PubMed ID: 9552155 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]