BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27523192)

  • 21. Compacting and correcting Trinity and Oases RNA-Seq
    Cabau C; Escudié F; Djari A; Guiguen Y; Bobe J; Klopp C
    PeerJ; 2017; 5():e2988. PubMed ID: 28224052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The central nervous system transcriptome of the weakly electric brown ghost knifefish (Apteronotus leptorhynchus): de novo assembly, annotation, and proteomics validation.
    Salisbury JP; Sîrbulescu RF; Moran BM; Auclair JR; Zupanc GK; Agar JN
    BMC Genomics; 2015 Mar; 16(1):166. PubMed ID: 25879418
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impacts of read length and transcriptome complexity for de novo assembly: a simulation study.
    Chang Z; Wang Z; Li G
    PLoS One; 2014; 9(4):e94825. PubMed ID: 24736633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.
    Honaas LA; Wafula EK; Wickett NJ; Der JP; Zhang Y; Edger PP; Altman NS; Pires JC; Leebens-Mack JH; dePamphilis CW
    PLoS One; 2016; 11(1):e0146062. PubMed ID: 26731733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequence comparative analysis using networks: software for evaluating de novo transcript assembly from next-generation sequencing.
    Misner I; Bicep C; Lopez P; Halary S; Bapteste E; Lane CE
    Mol Biol Evol; 2013 Aug; 30(8):1975-86. PubMed ID: 23666209
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration.
    Shmakov NА
    Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):30-38. PubMed ID: 34901701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.
    Haas BJ; Papanicolaou A; Yassour M; Grabherr M; Blood PD; Bowden J; Couger MB; Eccles D; Li B; Lieber M; MacManes MD; Ott M; Orvis J; Pochet N; Strozzi F; Weeks N; Westerman R; William T; Dewey CN; Henschel R; LeDuc RD; Friedman N; Regev A
    Nat Protoc; 2013 Aug; 8(8):1494-512. PubMed ID: 23845962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteogenomics-Guided Evaluation of RNA-Seq Assembly and Protein Database Construction for Emergent Model Organisms.
    Cogne Y; Gouveia D; Chaumot A; Degli-Esposti D; Geffard O; Pible O; Almunia C; Armengaud J
    Proteomics; 2020 May; 20(10):e1900261. PubMed ID: 32249536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pincho: A Modular Approach to High Quality De Novo Transcriptomics.
    Ortiz R; Gera P; Rivera C; Santos JC
    Genes (Basel); 2021 Jun; 12(7):. PubMed ID: 34206353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. De novo assembly of bacterial transcriptomes from RNA-seq data.
    Tjaden B
    Genome Biol; 2015 Jan; 16(1):1. PubMed ID: 25583448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forty-four novel protein-coding loci discovered using a proteomics informed by transcriptomics (PIT) approach in rat male germ cells.
    Chocu S; Evrard B; Lavigne R; Rolland AD; Aubry F; Jégou B; Chalmel F; Pineau C
    Biol Reprod; 2014 Nov; 91(5):123. PubMed ID: 25210130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of de Novo Sequencing to Large-Scale Complex Proteomics Data Sets.
    Devabhaktuni A; Elias JE
    J Proteome Res; 2016 Mar; 15(3):732-42. PubMed ID: 26743026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determining Alternative Protein Isoform Expression Using RNA Sequencing and Mass Spectrometry.
    Han Y; Wright JM; Lau E; Lam MPY
    STAR Protoc; 2020 Dec; 1(3):100138. PubMed ID: 33377032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TransFlow: a modular framework for assembling and assessing accurate de novo transcriptomes in non-model organisms.
    Seoane P; Espigares M; Carmona R; Polonio Á; Quintana J; Cretazzo E; Bota J; Pérez-García A; Dios Alché J; Gómez L; Claros MG
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):416. PubMed ID: 30453874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation.
    Fallon TR; Čalounová T; Mokrejš M; Weng JK; Pluskal T
    BMC Bioinformatics; 2023 Apr; 24(1):133. PubMed ID: 37016291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of assembly algorithms for improving rate of metatranscriptomic functional annotation.
    Celaj A; Markle J; Danska J; Parkinson J
    Microbiome; 2014; 2():39. PubMed ID: 25411636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tandem Mass Spectrum Sequencing: An Alternative to Database Search Engines in Shotgun Proteomics.
    Muth T; Rapp E; Berven FS; Barsnes H; Vaudel M
    Adv Exp Med Biol; 2016; 919():217-226. PubMed ID: 27975219
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strategies for transcriptome analysis in nonmodel plants.
    Ward JA; Ponnala L; Weber CA
    Am J Bot; 2012 Feb; 99(2):267-76. PubMed ID: 22301897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing Hybrid de Novo Transcriptome Assembly and Extending Genomic Resources for Giant Freshwater Prawns (Macrobrachium rosenbergii): The Identification of Genes and Markers Associated with Reproduction.
    Jung H; Yoon BH; Kim WJ; Kim DW; Hurwood DA; Lyons RE; Salin KR; Kim HS; Baek I; Chand V; Mather PB
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27164098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.