BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27523192)

  • 41. rnaQUAST: a quality assessment tool for de novo transcriptome assemblies.
    Bushmanova E; Antipov D; Lapidus A; Suvorov V; Prjibelski AD
    Bioinformatics; 2016 Jul; 32(14):2210-2. PubMed ID: 27153654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Taxonomic and Functional Compositions Impacted by the Quality of Metatranscriptomic Assemblies.
    Lau MCY; Harris RL; Oh Y; Yi MJ; Behmard A; Onstott TC
    Front Microbiol; 2018; 9():1235. PubMed ID: 29973918
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimal assembly strategies of transcriptome related to ploidies of eukaryotic organisms.
    He B; Zhao S; Chen Y; Cao Q; Wei C; Cheng X; Zhang Y
    BMC Genomics; 2015 Feb; 16(1):65. PubMed ID: 25759274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. dbHT-Trans: An Efficient Tool for Filtering the Protein-Encoding Transcripts Assembled by RNA-Seq According to Search for Homologous Proteins.
    Deng F; Chen SY
    J Comput Biol; 2016 Jan; 23(1):1-9. PubMed ID: 26484655
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An updated de novo transcriptome for green ash (Fraxinus pennsylvanica).
    Brungardt JJ; Bock CH
    G3 (Bethesda); 2023 Jun; 13(6):. PubMed ID: 37070792
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data.
    Chang Z; Li G; Liu J; Zhang Y; Ashby C; Liu D; Cramer CL; Huang X
    Genome Biol; 2015 Feb; 16(1):30. PubMed ID: 25723335
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial regulation dominates gene function in the ganglia chain.
    Hibsh D; Schori H; Efroni S; Shefi O
    Bioinformatics; 2014 Feb; 30(3):310-6. PubMed ID: 24085568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. De novo transcriptome assembly, functional annotation and differential gene expression analysis of juvenile and adult E. fetida, a model oligochaete used in ecotoxicological studies.
    Thunders M; Cavanagh J; Li Y
    Biol Res; 2017 Feb; 50(1):7. PubMed ID: 28241869
    [TBL] [Abstract][Full Text] [Related]  

  • 49. K-mer clustering algorithm using a MapReduce framework: application to the parallelization of the Inchworm module of Trinity.
    Kim CS; Winn MD; Sachdeva V; Jordan KE
    BMC Bioinformatics; 2017 Nov; 18(1):467. PubMed ID: 29100493
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteomics-grade de novo sequencing approach.
    Savitski MM; Nielsen ML; Kjeldsen F; Zubarev RA
    J Proteome Res; 2005; 4(6):2348-54. PubMed ID: 16335984
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A high-quality annotated transcriptome of swine peripheral blood.
    Liu H; Smith TPL; Nonneman DJ; Dekkers JCM; Tuggle CK
    BMC Genomics; 2017 Jun; 18(1):479. PubMed ID: 28646867
    [TBL] [Abstract][Full Text] [Related]  

  • 52. De novo derivation of proteomes from transcriptomes for transcript and protein identification.
    Evans VC; Barker G; Heesom KJ; Fan J; Bessant C; Matthews DA
    Nat Methods; 2012 Dec; 9(12):1207-11. PubMed ID: 23142869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of de novo transcriptome assemblies from RNA-Seq data.
    Li B; Fillmore N; Bai Y; Collins M; Thomson JA; Stewart R; Dewey CN
    Genome Biol; 2014 Dec; 15(12):553. PubMed ID: 25608678
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Designing a transcriptome next-generation sequencing project for a nonmodel plant species.
    Strickler SR; Bombarely A; Mueller LA
    Am J Bot; 2012 Feb; 99(2):257-66. PubMed ID: 22268224
    [TBL] [Abstract][Full Text] [Related]  

  • 55. f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome.
    Tang S; Hemberg M; Cansizoglu E; Belin S; Kosik K; Kreiman G; Steen H; Steen J
    Nucleic Acids Res; 2016 Jun; 44(10):e97. PubMed ID: 26980280
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Leveraging CyVerse Resources for De Novo Comparative Transcriptomics of Underserved (Non-model) Organisms.
    Joyce BL; Haug-Baltzell AK; Hulvey JP; McCarthy F; Devisetty UK; Lyons E
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518075
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Specific Protein Database Creation from Transcriptomics Data in Nonmodel Species: Holm Oak (Quercus ilex L.).
    Guerrero-Sanchez VM; Maldonado-Alconada AM; Sánchez-Lucas R; Rey MD
    Methods Mol Biol; 2020; 2139():57-68. PubMed ID: 32462577
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FRAMA: from RNA-seq data to annotated mRNA assemblies.
    Bens M; Sahm A; Groth M; Jahn N; Morhart M; Holtze S; Hildebrandt TB; Platzer M; Szafranski K
    BMC Genomics; 2016 Jan; 17():54. PubMed ID: 26763976
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Discovery of novel genes and gene isoforms by integrating transcriptomic and proteomic profiling from mouse liver.
    Wu P; Zhang H; Lin W; Hao Y; Ren L; Zhang C; Li N; Wei H; Jiang Y; He F
    J Proteome Res; 2014 May; 13(5):2409-19. PubMed ID: 24717071
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparing de novo and reference-based transcriptome assembly strategies by applying them to the blood-sucking bug Rhodnius prolixus.
    Marchant A; Mougel F; Mendonça V; Quartier M; Jacquin-Joly E; da Rosa JA; Petit E; Harry M
    Insect Biochem Mol Biol; 2016 Feb; 69():25-33. PubMed ID: 26005117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.