BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27523252)

  • 1. Design Considerations for RNA Spherical Nucleic Acids (SNAs).
    Barnaby SN; Perelman GA; Kohlstedt KL; Chinen AB; Schatz GC; Mirkin CA
    Bioconjug Chem; 2016 Sep; 27(9):2124-31. PubMed ID: 27523252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sequence-Specific Cellular Uptake of Spherical Nucleic Acid Nanoparticle Conjugates.
    Narayan SP; Choi CH; Hao L; Calabrese CM; Auyeung E; Zhang C; Goor OJ; Mirkin CA
    Small; 2015 Sep; 11(33):4173-82. PubMed ID: 26097111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between Poly(ethylene glycol) Modifications on RNA-Spherical Nucleic Acid Conjugates and Cellular Uptake and Circulation Time.
    Chinen AB; Ferrer JR; Merkel TJ; Mirkin CA
    Bioconjug Chem; 2016 Nov; 27(11):2715-2721. PubMed ID: 27762539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Behavior of Ultrasmall Spherical Nucleic Acids.
    Callmann CE; Vasher MK; Das A; Kusmierz CD; Mirkin CA
    Small; 2023 Jun; 19(24):e2300097. PubMed ID: 36905236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Investigation into the Resistance of Spherical Nucleic Acids against DNA Enzymatic Degradation.
    Kyriazi ME; El-Sagheer AH; Medintz IL; Brown T; Kanaras AG
    Bioconjug Chem; 2022 Jan; 33(1):219-225. PubMed ID: 35001632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyvalent Spherical Nucleic Acids for Universal Display of Functional DNA with Ultrahigh Stability.
    Liu B; Huang Z; Liu J
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9439-9442. PubMed ID: 29863751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Hybridizable Spherical Nucleic Acids by Tandem Glutathione Treatment and Polythymine Spacing.
    Sun J; Curry D; Yuan Q; Zhang X; Liang H
    ACS Appl Mater Interfaces; 2016 May; 8(19):12504-13. PubMed ID: 27128167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spherical nucleic acids as a divergent platform for synthesizing RNA-nanoparticle conjugates through enzymatic ligation.
    Rouge JL; Hao L; Wu XA; Briley WE; Mirkin CA
    ACS Nano; 2014 Sep; 8(9):8837-43. PubMed ID: 25144723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spherical Nucleic Acids with Tailored and Active Protein Coronae.
    Zhang W; Meckes B; Mirkin CA
    ACS Cent Sci; 2019 Dec; 5(12):1983-1990. PubMed ID: 31893228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and bioanalytical applications of poly-adenine-mediated gold nanoparticle-based spherical nucleic acids.
    Shang Z; Deng Z; Yi X; Yang M; Nong X; Lin M; Xia F
    Anal Methods; 2023 Nov; 15(42):5564-5576. PubMed ID: 37861233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backbone-modified oligonucleotides for tuning the cellular uptake behaviour of spherical nucleic acids.
    Song WC; Kim KR; Park M; Lee KE; Ahn DR
    Biomater Sci; 2017 Feb; 5(3):412-416. PubMed ID: 28133665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming Hairpin-like siRNA-Based Spherical Nucleic Acids into Biocompatible Constructs.
    Vasher MK; Evangelopoulos M; Mirkin CA
    ACS Appl Bio Mater; 2023 Sep; 6(9):3912-3918. PubMed ID: 37567247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A palindromic-based strategy for colorimetric detection of HIV-1 nucleic acid: Single-component assembly of gold nanoparticle-core spherical nucleic acids.
    Karami A; Hasani M
    Anal Chim Acta; 2020 Mar; 1102():119-129. PubMed ID: 32043991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hairpin-like siRNA-Based Spherical Nucleic Acids.
    Vasher MK; Yamankurt G; Mirkin CA
    J Am Chem Soc; 2022 Feb; 144(7):3174-3181. PubMed ID: 35143189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spherical Nucleic Acids as Precision Therapeutics for the Treatment of Cancer-From Bench to Bedside.
    Mahajan AS; Stegh AH
    Cancers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-Controlled Spherical Nucleic Acids: Gene Silencing, Encapsulation, and Cellular Uptake.
    Kaviani S; Fakih HH; Asohan J; Katolik A; Damha MJ; Sleiman HF
    Nucleic Acid Ther; 2023 Aug; 33(4):265-276. PubMed ID: 37196168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and enhanced gene silencing activity of spherical 2'-fluoroarabinose nucleic acids (FANA-SNAs).
    Fakih HH; Katolik A; Malek-Adamian E; Fakhoury JJ; Kaviani S; Damha MJ; Sleiman HF
    Chem Sci; 2021 Jan; 12(8):2993-3003. PubMed ID: 34164068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells.
    Young KL; Scott AW; Hao L; Mirkin SE; Liu G; Mirkin CA
    Nano Lett; 2012 Jul; 12(7):3867-71. PubMed ID: 22725653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma.
    Grafals-Ruiz N; Rios-Vicil CI; Lozada-Delgado EL; Quiñones-Díaz BI; Noriega-Rivera RA; Martínez-Zayas G; Santana-Rivera Y; Santiago-Sánchez GS; Valiyeva F; Vivas-Mejía PE
    Int J Nanomedicine; 2020; 15():2809-2828. PubMed ID: 32368056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular fate of spherical nucleic acid nanoparticle conjugates.
    Wu XA; Choi CH; Zhang C; Hao L; Mirkin CA
    J Am Chem Soc; 2014 May; 136(21):7726-33. PubMed ID: 24841494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.