These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27524040)

  • 1. Compressive behaviour of gyroid lattice structures for human cancellous bone implant applications.
    Yánez A; Herrera A; Martel O; Monopoli D; Afonso H
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():445-448. PubMed ID: 27524040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue behavior of As-built selective laser melted titanium scaffolds with sheet-based gyroid microarchitecture for bone tissue engineering.
    Kelly CN; Francovich J; Julmi S; Safranski D; Guldberg RE; Maier HJ; Gall K
    Acta Biomater; 2019 Aug; 94():610-626. PubMed ID: 31125727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term osseointegration of 3D printed CoCr constructs with an interconnected open-pore architecture prepared by electron beam melting.
    Shah FA; Omar O; Suska F; Snis A; Matic A; Emanuelsson L; Norlindh B; Lausmaa J; Thomsen P; Palmquist A
    Acta Biomater; 2016 May; 36():296-309. PubMed ID: 27000553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications.
    Li Y; Ding Y; Munir K; Lin J; Brandt M; Atrens A; Xiao Y; Kanwar JR; Wen C
    Acta Biomater; 2019 Mar; 87():273-284. PubMed ID: 30690210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational study and experimental validation of porous structures fabricated by electron beam melting: a challenge to avoid stress shielding.
    Herrera A; Yánez A; Martel O; Afonso H; Monopoli D
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():89-93. PubMed ID: 25491805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufactured gyroid-based cell structures under compression: design, testing and simulation for biomedical applications.
    Castro-Sandoval JC; Chavez A; Corona-Castuera J; Henao J; Rivera-Gil MA; Poblano-Salas CA
    Comput Methods Biomech Biomed Engin; 2024; 27(2):211-221. PubMed ID: 36790389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting.
    Cheng XY; Li SJ; Murr LE; Zhang ZB; Hao YL; Yang R; Medina F; Wicker RB
    J Mech Behav Biomed Mater; 2012 Dec; 16():153-62. PubMed ID: 23182384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM).
    Parthasarathy J; Starly B; Raman S; Christensen A
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants.
    Han C; Li Y; Wang Q; Wen S; Wei Q; Yan C; Hao L; Liu J; Shi Y
    J Mech Behav Biomed Mater; 2018 Apr; 80():119-127. PubMed ID: 29414467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting.
    Heinl P; Müller L; Körner C; Singer RF; Müller FA
    Acta Biomater; 2008 Sep; 4(5):1536-44. PubMed ID: 18467197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of density grading on the mechanical behaviour of advanced functionally graded lattice structures.
    Distefano F; Epasto G
    J Mech Behav Biomed Mater; 2024 May; 153():106477. PubMed ID: 38428204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological and mechanical characterisation of three-dimensional gyroid structures fabricated by electron beam melting for the use as a porous biomaterial.
    Polley C; Radlof W; Hauschulz F; Benz C; Sander M; Seitz H
    J Mech Behav Biomed Mater; 2022 Jan; 125():104882. PubMed ID: 34740017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bionic mechanical design and SLM manufacture of porous Ti6Al4V scaffolds for load-bearing cancellous bone implants.
    Liao BO; Xu C; Li W; Lu D; Jin ZM
    Acta Bioeng Biomech; 2021; 23(3):97-107. PubMed ID: 34978311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.
    Taniguchi N; Fujibayashi S; Takemoto M; Sasaki K; Otsuki B; Nakamura T; Matsushita T; Kokubo T; Matsuda S
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():690-701. PubMed ID: 26652423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical behavior of bone scaffolds made of additive manufactured tricalciumphosphate and titanium alloy under different loading conditions.
    Wieding J; Fritsche A; Heinl P; Körner C; Cornelsen M; Seitz H; Mittelmeier W; Bader R
    J Appl Biomater Funct Mater; 2013 Dec; 11(3):e159-66. PubMed ID: 23599179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive properties and failure behavior of photocast hydroxyapatite gyroid scaffolds vary with porosity.
    Isaacson N; Lopez-Ambrosio K; Chubb L; Waanders N; Hoffmann E; Witt C; James S; Prawel DA
    J Biomater Appl; 2022 Jul; 37(1):55-76. PubMed ID: 35331033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimisation of the additive manufacturing parameters of polylactic acid (PLA) cellular structures for biomedical applications.
    Myers D; Abdel-Wahab A; Hafeez F; Kovacev N; Essa K
    J Mech Behav Biomed Mater; 2022 Dec; 136():105447. PubMed ID: 36272224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures.
    Ali D; Sen S
    J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.