BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27524041)

  • 1. Gold nanoparticles production using reactor and cyclotron based methods in assessment of (196,198)Au production yields by (197)Au neutron absorption for therapeutic purposes.
    Khorshidi A
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():449-454. PubMed ID: 27524041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications.
    Khorshidi A
    Cancer Biother Radiopharm; 2015 Oct; 30(8):317-29. PubMed ID: 26397967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of neutron induced radioactivity in the concrete walls of a PET cyclotron vault room with MCNPX.
    Martínez-Serrano JJ; Díez de los Ríos A
    Med Phys; 2010 Nov; 37(11):6015-21. PubMed ID: 21158313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator.
    Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESTIMATION OF THERMAL & EPITHERMAL NEUTRON FLUX AND GAMMA DOSE DISTRIBUTION IN A MEDICAL CYCLOTRON FACILITY FOR RADIATION PROTECTION PURPOSES USING GOLD FOILS AND GATE 9.
    Abolaban FA; Alawi MA; Taha EM; Elmoujarkach E; Banoqitah EM; Alhawsawi AM; De Maio P; Lopopolo G; Tolomeo A; Dimiccoli V; Nisbet A
    Radiat Prot Dosimetry; 2021 May; 193(3-4):176-184. PubMed ID: 33823534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of thermal neutron flux around a PET cyclotron.
    Ogata Y; Ishigure N; Mochizuki S; Ito K; Hatano K; Abe J; Miyahara H; Masumoto K; Nakamura H
    Health Phys; 2011 May; 100 Suppl 2():S60-6. PubMed ID: 21451309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NEUTRON FLUX DISTRIBUTION IN THE RADIOISOTOPES TARGET ROOMS AND MAZE IN SYRIAN CYCLOTRON.
    Haddad K; Al Rayyes AH; Al-Homyed A
    Radiat Prot Dosimetry; 2019 Dec; 185(3):371-375. PubMed ID: 31034057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmark experiments for cyclotron-based neutron source for BNCT.
    Yonai S; Itoga T; Baba M; Nakamura T; Yokobori H; Tahara Y
    Appl Radiat Isot; 2004 Nov; 61(5):997-1001. PubMed ID: 15308182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the
    Alinejad AH; Kakavand T; Aboudzadeh Rovais MR; Kakaei S
    Appl Radiat Isot; 2022 Jun; 184():110187. PubMed ID: 35339808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical estimation of
    Auditore L; Amato E; Baldari S
    Appl Radiat Isot; 2017 Apr; 122():229-234. PubMed ID: 28209500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production and modeling of radioactive gold nanoparticles in Tehran research reactor.
    Hosseini SF; Sadeghi M; Aboudzadeh MR; Mohseni M
    Appl Radiat Isot; 2016 Dec; 118():361-365. PubMed ID: 27771447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoneutrons from a beryllium reflector: a potential source of problems with Zr-Au flux monitors in
    Koster-Ammerlaan MJ; Bode P; Winkelman AJ
    J Radioanal Nucl Chem; 2012; 291(2):569-572. PubMed ID: 26224914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the neutron field in the vicinity of an unshielded PET cyclotron.
    Méndez R; Iñiguez MP; Martí-Climent JM; Peñuelas I; Vega-Carrillo HR; Barquero R
    Phys Med Biol; 2005 Nov; 50(21):5141-52. PubMed ID: 16237246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theoretical study for the production of
    Tatari M; Dehghan Manshadi Z; Naik H
    Appl Radiat Isot; 2022 Oct; 188():110347. PubMed ID: 35792354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production assessment of non-carrier-added
    Sadeghi M; Aboudzadeh Rovais MR; Zandi N; Moradi M; Yousefi K
    Appl Radiat Isot; 2019 Dec; 154():108877. PubMed ID: 31470190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "High specific activity" radiotracers for metallo-toxicological studies: cyclotron and nuclear reactor production, radiochemical separation and "quality control": platinum, iridium, gold, copper and gallium.
    Bonardi M; Groppi F; Birattari C; Arginelli D
    Ann Chim; 2002 Sep; 92(9):795-813. PubMed ID: 12407903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy.
    Rivard MJ
    Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-cost target system for neutron activation using a medical cyclotron. Application to the non-destructive analysis of gold and silver.
    Campbell M; Tikka A
    Appl Radiat Isot; 2022 Jun; 184():110117. PubMed ID: 35272232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.