These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 27524045)

  • 21. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications.
    Zhu C; Du D; Lin Y
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):43-55. PubMed ID: 27373809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical sensors and biosensors based on less aggregated graphene.
    Bo X; Zhou M; Guo L
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):167-186. PubMed ID: 27161575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum.
    Ruiyi L; Ling L; Hongxia B; Zaijun L
    Biosens Bioelectron; 2016 May; 79():457-66. PubMed ID: 26745792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent advances in design of electrochemical affinity biosensors for low level detection of cancer protein biomarkers using nanomaterial-assisted signal enhancement strategies.
    Farzin L; Shamsipur M
    J Pharm Biomed Anal; 2018 Jan; 147():185-210. PubMed ID: 28869052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon nanomaterials-based electrochemical aptasensors.
    Wang Z; Yu J; Gui R; Jin H; Xia Y
    Biosens Bioelectron; 2016 May; 79():136-49. PubMed ID: 26703992
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review.
    Cernat A; Tertiş M; Săndulescu R; Bedioui F; Cristea A; Cristea C
    Anal Chim Acta; 2015 Jul; 886():16-28. PubMed ID: 26320632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay.
    Wang J; Wang X; Wu S; Song J; Zhao Y; Ge Y; Meng C
    Anal Chim Acta; 2016 Feb; 906():80-88. PubMed ID: 26772127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine.
    Yang G; Zhu C; Du D; Zhu J; Lin Y
    Nanoscale; 2015 Sep; 7(34):14217-31. PubMed ID: 26234249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites.
    Luong JHT; Vashist SK
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):293-304. PubMed ID: 26620098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomaterials and lab-on-a-chip technologies.
    Medina-Sánchez M; Miserere S; Merkoçi A
    Lab Chip; 2012 May; 12(11):1932-43. PubMed ID: 22517169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 2D and 3D graphene materials: Preparation and bioelectrochemical applications.
    Gao H; Duan H
    Biosens Bioelectron; 2015 Mar; 65():404-19. PubMed ID: 25461188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review.
    Khoshnevisan K; Maleki H; Honarvarfard E; Baharifar H; Gholami M; Faridbod F; Larijani B; Faridi Majidi R; Khorramizadeh MR
    Mikrochim Acta; 2019 Jan; 186(1):49. PubMed ID: 30610391
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.
    Wang X; Wang J; Cheng H; Yu P; Ye J; Mao L
    Langmuir; 2011 Sep; 27(17):11180-6. PubMed ID: 21793577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers.
    Liu B; Tang D; Tang J; Su B; Li Q; Chen G
    Analyst; 2011 Jun; 136(11):2218-20. PubMed ID: 21384013
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon nanomaterial-based electrochemical biosensors: an overview.
    Wang Z; Dai Z
    Nanoscale; 2015 Apr; 7(15):6420-31. PubMed ID: 25805626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor.
    Liu K; Zhang JJ; Wang C; Zhu JJ
    Biosens Bioelectron; 2011 Apr; 26(8):3627-32. PubMed ID: 21388800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry.
    Chen XM; Wu GH; Jiang YQ; Wang YR; Chen X
    Analyst; 2011 Nov; 136(22):4631-40. PubMed ID: 21975368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current trends in the development of the electrochemiluminescent immunosensors.
    Muzyka K
    Biosens Bioelectron; 2014 Apr; 54():393-407. PubMed ID: 24292145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of graphene electrophoretic deposition. A review.
    Chavez-Valdez A; Shaffer MS; Boccaccini AR
    J Phys Chem B; 2013 Feb; 117(6):1502-15. PubMed ID: 23088165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.
    Adhikari BR; Govindhan M; Chen A
    Sensors (Basel); 2015 Sep; 15(9):22490-508. PubMed ID: 26404304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.