These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 27524071)
1. Engineered porous scaffolds for periprosthetic infection prevention. Iviglia G; Cassinelli C; Bollati D; Baino F; Torre E; Morra M; Vitale-Brovarone C Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():701-715. PubMed ID: 27524071 [TBL] [Abstract][Full Text] [Related]
2. Poly (ε-caprolactone) coating delays vancomycin delivery from porous chitosan/β-tricalcium phosphate composites. Fang T; Wen J; Zhou J; Shao Z; Dong J J Biomed Mater Res B Appl Biomater; 2012 Oct; 100(7):1803-11. PubMed ID: 22807376 [TBL] [Abstract][Full Text] [Related]
3. Effect of dual delivery of antibiotics (vancomycin and cefazolin) and BMP-7 from chitosan microparticles on Staphylococcus epidermidis and pre-osteoblasts in vitro. Mantripragada VP; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():409-417. PubMed ID: 27287137 [TBL] [Abstract][Full Text] [Related]
4. Vancomycin-chitosan composite deposited on post porous hydroxyapatite coated Ti6Al4V implant for drug controlled release. Yang CC; Lin CC; Liao JW; Yen SK Mater Sci Eng C Mater Biol Appl; 2013 May; 33(4):2203-12. PubMed ID: 23498249 [TBL] [Abstract][Full Text] [Related]
5. The controlled release of vancomycin in gelatin/β-TCP composite scaffolds. Zhou J; Fang T; Wang Y; Dong J J Biomed Mater Res A; 2012 Sep; 100(9):2295-301. PubMed ID: 22499502 [TBL] [Abstract][Full Text] [Related]
6. Silicon bioceramic loaded with vancomycin stimulates bone tissue regeneration. Manchón A; Alkhraisat MH; Rueda-Rodriguez C; Pintado C; Prados-Frutos JC; Torres J; Lopez Cabarcos E J Biomed Mater Res B Appl Biomater; 2018 Aug; 106(6):2307-2315. PubMed ID: 29098767 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold. Cao Z; Jiang D; Yan L; Wu J J Biomater Appl; 2016 May; 30(10):1566-77. PubMed ID: 26686585 [TBL] [Abstract][Full Text] [Related]
8. Preparation and in vitro evaluation of mesoporous hydroxyapatite coated β-TCP porous scaffolds. Ye X; Cai S; Xu G; Dou Y; Hu H; Ye X Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):5001-7. PubMed ID: 24094217 [TBL] [Abstract][Full Text] [Related]
9. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds. Kim YH; Anirban JM; Song HY; Seo HS; Lee BT J Biomater Appl; 2011 Feb; 25(6):539-58. PubMed ID: 20207781 [TBL] [Abstract][Full Text] [Related]
10. Multi-loaded ceramic beads/matrix scaffolds obtained by combining ionotropic and freeze gelation for sustained and tuneable vancomycin release. Hess U; Mikolajczyk G; Treccani L; Streckbein P; Heiss C; Odenbach S; Rezwan K Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():542-553. PubMed ID: 27287153 [TBL] [Abstract][Full Text] [Related]
11. Antibacterial chitosan coating on nano-hydroxyapatite/polyamide66 porous bone scaffold for drug delivery. Huang D; Zuo Y; Zou Q; Zhang L; Li J; Cheng L; Shen J; Li Y J Biomater Sci Polym Ed; 2011; 22(7):931-44. PubMed ID: 20566065 [TBL] [Abstract][Full Text] [Related]
12. Liposome combined porous beta-TCP scaffold: preparation, characterization, and anti-biofilm activity. Zhu CT; Xu YQ; Shi J; Li J; Ding J Drug Deliv; 2010 Aug; 17(6):391-8. PubMed ID: 20429845 [TBL] [Abstract][Full Text] [Related]
13. Huang H; Wu Z; Yang Z; Fan X; Bai S; Luo J; Chen M; Xie X Biomed Mater; 2022 Oct; 17(6):. PubMed ID: 36220010 [TBL] [Abstract][Full Text] [Related]
14. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
15. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
16. Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. Shavandi A; Bekhit AE; Sun Z; Ali MA Int J Biol Macromol; 2016 Dec; 93(Pt B):1446-1456. PubMed ID: 27126171 [TBL] [Abstract][Full Text] [Related]
17. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix. Nyberg E; Rindone A; Dorafshar A; Grayson WL Tissue Eng Part A; 2017 Jun; 23(11-12):503-514. PubMed ID: 28027692 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study. Norambuena GA; Patel R; Karau M; Wyles CC; Jannetto PJ; Bennet KE; Hanssen AD; Sierra RJ Clin Orthop Relat Res; 2017 Mar; 475(3):722-732. PubMed ID: 26847453 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Bastami F; Paknejad Z; Jafari M; Salehi M; Rezai Rad M; Khojasteh A Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():481-491. PubMed ID: 28024612 [TBL] [Abstract][Full Text] [Related]
20. Controlled release of NELL-1 protein from chitosan/hydroxyapatite-modified TCP particles. Zhang Y; Dong R; Park Y; Bohner M; Zhang X; Ting K; Soo C; Wu BM Int J Pharm; 2016 Sep; 511(1):79-89. PubMed ID: 27349789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]