These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27524095)

  • 21. Scaffolds: A Novel Carrier and Potential Wound Healer.
    Chaudhary C; Garg T
    Crit Rev Ther Drug Carrier Syst; 2015; 32(4):277-321. PubMed ID: 26080925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering.
    Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Baharvand H; Kiani S; Al-Deyab SS; Ramakrishna S
    J Tissue Eng Regen Med; 2011 Apr; 5(4):e17-35. PubMed ID: 21413155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polysaccharide-coated PCL nanofibers for wound dressing applications.
    Croisier F; Atanasova G; Poumay Y; Jérôme C
    Adv Healthc Mater; 2014 Dec; 3(12):2032-9. PubMed ID: 25263074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradable polymer scaffolds for cartilage tissue engineering.
    Lu L; Zhu X; Valenzuela RG; Currier BL; Yaszemski MJ
    Clin Orthop Relat Res; 2001 Oct; (391 Suppl):S251-70. PubMed ID: 11603709
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine.
    Rodríguez-Vázquez M; Vega-Ruiz B; Ramos-Zúñiga R; Saldaña-Koppel DA; Quiñones-Olvera LF
    Biomed Res Int; 2015; 2015():821279. PubMed ID: 26504833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering Polysaccharides for Tissue Repair and Regeneration.
    Wu P; Xi X; Li R; Sun G
    Macromol Biosci; 2021 Sep; 21(9):e2100141. PubMed ID: 34219388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biodegradable elastomers for biomedical applications and regenerative medicine.
    Bat E; Zhang Z; Feijen J; Grijpma DW; Poot AA
    Regen Med; 2014 May; 9(3):385-98. PubMed ID: 24935047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chitosan and its derivatives for tissue engineering applications.
    Kim IY; Seo SJ; Moon HS; Yoo MK; Park IY; Kim BC; Cho CS
    Biotechnol Adv; 2008; 26(1):1-21. PubMed ID: 17884325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocompatible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability.
    Saber-Samandari S; Saber-Samandari S
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():721-732. PubMed ID: 28415522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Smart biomaterials for tissue engineering of cartilage.
    Stoop R
    Injury; 2008 Apr; 39 Suppl 1():S77-87. PubMed ID: 18313475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent insights on applications of pullulan in tissue engineering.
    Singh RS; Kaur N; Rana V; Kennedy JF
    Carbohydr Polym; 2016 Nov; 153():455-462. PubMed ID: 27561517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering.
    Stumpf TR; Yang X; Zhang J; Cao X
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():372-383. PubMed ID: 29025671
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer.
    Dorati R; Colonna C; Tomasi C; Genta I; Bruni G; Conti B
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():130-9. PubMed ID: 24268242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrospinning of polysaccharides for regenerative medicine.
    Lee KY; Jeong L; Kang YO; Lee SJ; Park WH
    Adv Drug Deliv Rev; 2009 Oct; 61(12):1020-32. PubMed ID: 19643155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in polymeric systems for tissue engineering and biomedical applications.
    Ravichandran R; Sundarrajan S; Venugopal JR; Mukherjee S; Ramakrishna S
    Macromol Biosci; 2012 Mar; 12(3):286-311. PubMed ID: 22278779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering.
    Xu H; Cai S; Xu L; Yang Y
    Langmuir; 2014 Jul; 30(28):8461-70. PubMed ID: 25010870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.