These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27524179)

  • 21. Contribution of mexAB-oprM and mexXY (-oprA) efflux operons in antibiotic resistance of clinical Pseudomonas aeruginosa isolates in Tabriz, Iran.
    Goli HR; Nahaei MR; Rezaee MA; Hasani A; Samadi Kafil H; Aghazadeh M; Sheikhalizadeh V
    Infect Genet Evol; 2016 Nov; 45():75-82. PubMed ID: 27562333
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Clinical prediction tool to identify patients with Pseudomonas aeruginosa respiratory tract infections at greatest risk for multidrug resistance.
    Lodise TP; Miller CD; Graves J; Furuno JP; McGregor JC; Lomaestro B; Graffunder E; McNutt LA
    Antimicrob Agents Chemother; 2007 Feb; 51(2):417-22. PubMed ID: 17158943
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antimicrobial activity of tobramycin against respiratory cystic fibrosis Pseudomonas aeruginosa isolates from Bulgaria.
    Strateva T; Petrova G; Mitov I
    J Chemother; 2010 Dec; 22(6):378-83. PubMed ID: 21303744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Susceptibility testing of clinical isolates of pseudomonas aeruginosa to levofloxacin, moxifloxacin, and gatifloxacin as a guide to treating pseudomonas ocular infections.
    Epstein SP; Bottone EJ; Asbell PA
    Eye Contact Lens; 2006 Sep; 32(5):240-4. PubMed ID: 16974157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa.
    Hedayati Ch M; Abolhassani Targhi A; Shamsi F; Heidari F; Salehi Moghadam Z; Mirzaie A; Behdad R; Moghtaderi M; Akbarzadeh I
    J Biomed Mater Res A; 2021 Jun; 109(6):966-980. PubMed ID: 32865883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center.
    Ciofu O; Giwercman B; Pedersen SS; Høiby N
    APMIS; 1994 Sep; 102(9):674-80. PubMed ID: 7946270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Antipersister Strategy for Treatment of Chronic Pseudomonas aeruginosa Infections.
    Koeva M; Gutu AD; Hebert W; Wager JD; Yonker LM; O'Toole GA; Ausubel FM; Moskowitz SM; Joseph-McCarthy D
    Antimicrob Agents Chemother; 2017 Dec; 61(12):. PubMed ID: 28923873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial activity of chensinin-1b, a peptide with a random coil conformation, against multiple-drug-resistant Pseudomonas aeruginosa.
    Shang D; Meng X; Zhang D; Kou Z
    Biochem Pharmacol; 2017 Nov; 143():65-78. PubMed ID: 28756209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-vivo impact of the MexXY efflux system on aminoglycoside efficacy in an experimental model of Pseudomonas aeruginosa pneumonia treated with tobramycin.
    Martha B; Croisier D; Durand D; Hocquet D; Plesiat P; Piroth L; Portier H; Chavanet P
    Clin Microbiol Infect; 2006 May; 12(5):426-32. PubMed ID: 16643518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Verapamil-tobramycin synergy in Pseudomonas cepacia but not Pseudomonas aeruginosa in vitro.
    Cohn RC; Rudzienski L; Putnam RW
    Chemotherapy; 1995; 41(5):330-3. PubMed ID: 8521733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa.
    Dupont P; Hocquet D; Jeannot K; Chavanet P; Plésiat P
    J Antimicrob Chemother; 2005 Apr; 55(4):518-22. PubMed ID: 15722391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of fluoroquinolones and aminoglycosides on P. aeruginosa virulence factor production and cytotoxicity.
    Foulkes DM; McLean K; Sloniecka M; Rustidge S; Byrne DP; Haneef AS; Winstanley C; Berry N; Fernig DG; Kaye SB
    Biochem J; 2022 Dec; 479(24):2511-2527. PubMed ID: 36504127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of tobramycin incorporated with bismuth-ethanedithiol loaded on niosomes on the quorum sensing and biofilm formation of Pseudomonas aeruginosa.
    Mahdiun F; Mansouri S; Khazaeli P; Mirzaei R
    Microb Pathog; 2017 Jun; 107():129-135. PubMed ID: 28323149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa.
    Rossolini GM; Mantengoli E
    Clin Microbiol Infect; 2005 Jul; 11 Suppl 4():17-32. PubMed ID: 15953020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surveillance of multi-drug resistant Pseudomonas aeruginosa in an urban tertiary-care teaching hospital.
    Jung R; Fish DN; Obritsch MD; MacLaren R
    J Hosp Infect; 2004 Jun; 57(2):105-11. PubMed ID: 15183239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary landscapes of Pseudomonas aeruginosa towards ribosome-targeting antibiotic resistance depend on selection strength.
    Sanz-García F; Sánchez MB; Hernando-Amado S; Martínez JL
    Int J Antimicrob Agents; 2020 Jun; 55(6):105965. PubMed ID: 32325206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: resistance mechanisms and implications for therapy.
    Zavascki AP; Carvalhaes CG; Picão RC; Gales AC
    Expert Rev Anti Infect Ther; 2010 Jan; 8(1):71-93. PubMed ID: 20014903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of Galleria mellonella larvae for measuring the efficacy and pharmacokinetics of antibiotic therapies against Pseudomonas aeruginosa infection.
    Hill L; Veli N; Coote PJ
    Int J Antimicrob Agents; 2014 Mar; 43(3):254-61. PubMed ID: 24361354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two mechanisms of killing of Pseudomonas aeruginosa by tobramycin assessed at multiple inocula via mechanism-based modeling.
    Bulitta JB; Ly NS; Landersdorfer CB; Wanigaratne NA; Velkov T; Yadav R; Oliver A; Martin L; Shin BS; Forrest A; Tsuji BT
    Antimicrob Agents Chemother; 2015 Apr; 59(4):2315-27. PubMed ID: 25645838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyanion-tobramycin nanocomplexes into functional microparticles for the treatment of Pseudomonas aeruginosa infections in cystic fibrosis.
    Craparo EF; Porsio B; Schillaci D; Cusimano MG; Spigolon D; Giammona G; Cavallaro G
    Nanomedicine (Lond); 2017 Jan; 12(1):25-42. PubMed ID: 27879162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.