BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 27524252)

  • 21. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia.
    Meunier L; Walker SR; Wragg J; Parsons MB; Koch I; Jamieson HE; Reimer KJ
    Environ Sci Technol; 2010 Apr; 44(7):2667-74. PubMed ID: 20218545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solid-phase partitioning and release-retention mechanisms of copper, lead, zinc and arsenic in soils impacted by artisanal and small-scale gold mining (ASGM) activities.
    Tabelin CB; Silwamba M; Paglinawan FC; Mondejar AJS; Duc HG; Resabal VJ; Opiso EM; Igarashi T; Tomiyama S; Ito M; Hiroyoshi N; Villacorte-Tabelin M
    Chemosphere; 2020 Dec; 260():127574. PubMed ID: 32688316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An eco-friendly method for heavy metal removal from mine tailings.
    Arab F; Mulligan CN
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):16202-16216. PubMed ID: 29594884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arsenic pollution sources.
    Garelick H; Jones H; Dybowska A; Valsami-Jones E
    Rev Environ Contam Toxicol; 2008; 197():17-60. PubMed ID: 18982996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic bioaccessibility in gold mine tailings of Delita, Cuba.
    Toujaguez R; Ono FB; Martins V; Cabrera PP; Blanco AV; Bundschuh J; Guilherme LR
    J Hazard Mater; 2013 Nov; 262():1004-13. PubMed ID: 23428178
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic Matter Amendment and Plant Colonization Drive Mineral Weathering, Organic Carbon Sequestration, and Water-Stable Aggregation in Magnetite Fe Ore Tailings.
    Wu S; Liu Y; Bougoure JJ; Southam G; Chan TS; Lu YR; Haw SC; Nguyen TAH; You F; Huang L
    Environ Sci Technol; 2019 Dec; 53(23):13720-13731. PubMed ID: 31697487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water chemistry impacts on arsenic mobilization from arsenopyrite dissolution and secondary mineral precipitation: implications for managed aquifer recharge.
    Neil CW; Yang YJ; Schupp D; Jun YS
    Environ Sci Technol; 2014 Apr; 48(8):4395-405. PubMed ID: 24621369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles.
    Dold B; Spangenberg JE
    Environ Sci Technol; 2005 Aug; 39(15):5650-6. PubMed ID: 16124299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of arsenic species in tailings and windblown dust from a gold mining area.
    Ono FB; Tappero R; Sparks D; Guilherme LR
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):638-47. PubMed ID: 26330325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of adsorbed arsenate on the rate of transformation of 2-line ferrihydrite at pH 10.
    Das S; Hendry MJ; Essilfie-Dughan J
    Environ Sci Technol; 2011 Jul; 45(13):5557-63. PubMed ID: 21619035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leaching characteristics of encapsulated controlled low-strength materials containing arsenic-bearing waste precipitates from refractory gold bioleaching.
    Bouzalakos S; Dudeney AW; Chan BK
    J Environ Manage; 2016 Jul; 176():86-100. PubMed ID: 27039368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility.
    Dixit S; Hering JG
    Environ Sci Technol; 2003 Sep; 37(18):4182-9. PubMed ID: 14524451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Copper Speciation in Variably Toxic Sediments at the Ely Copper Mine, Vermont, United States.
    Kimball BE; Foster AL; Seal RR; Piatak NM; Webb SM; Hammarstrom JM
    Environ Sci Technol; 2016 Feb; 50(3):1126-36. PubMed ID: 26734712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of cassiterite controlling arsenic mobility in an abandoned stanniferous tailings impoundment at Llallagua, Bolivia.
    Romero FM; Canet C; Alfonso P; Zambrana RN; Soto N
    Sci Total Environ; 2014 May; 481():100-7. PubMed ID: 24589759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization.
    Wu S; Liu Y; Southam G; Robertson L; Chiu TH; Cross AT; Dixon KW; Stevens JC; Zhong H; Chan TS; Lu YJ; Huang L
    Sci Total Environ; 2019 Feb; 651(Pt 1):192-202. PubMed ID: 30227289
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada.
    Othmane G; Allard T; Morin G; Sélo M; Brest J; Llorens I; Chen N; Bargar JR; Fayek M; Calas G
    Environ Sci Technol; 2013 Nov; 47(22):12695-702. PubMed ID: 24087982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic species in weathering mine tailings and biogenic solids at the Lava Cap Mine Superfund Site, Nevada City, CA.
    Foster AL; Ashley RP; Rytuba JJ
    Geochem Trans; 2011 Jan; 12(1):1. PubMed ID: 21261983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.