BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27524848)

  • 1. Cry-based infant pathology classification using GMMs.
    Farsaie Alaie H; Abou-Abbas L; Tadj C
    Speech Commun; 2016 Mar; 77():28-52. PubMed ID: 27524848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using CCA-Fused Cepstral Features in a Deep Learning-Based Cry Diagnostic System for Detecting an Ensemble of Pathologies in Newborns.
    Khalilzad Z; Tadj C
    Diagnostics (Basel); 2023 Feb; 13(5):. PubMed ID: 36900023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Entropy-Based Architecture for Detection of Sepsis in Newborn Cry Diagnostic Systems.
    Khalilzad Z; Kheddache Y; Tadj C
    Entropy (Basel); 2022 Aug; 24(9):. PubMed ID: 36141080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved binary dragonfly optimization algorithm and wavelet packet based non-linear features for infant cry classification.
    Hariharan M; Sindhu R; Vijean V; Yazid H; Nadarajaw T; Yaacob S; Polat K
    Comput Methods Programs Biomed; 2018 Mar; 155():39-51. PubMed ID: 29512503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fully automated approach for baby cry signal segmentation and boundary detection of expiratory and inspiratory episodes.
    Abou-Abbas L; Tadj C; Fersaie HA
    J Acoust Soc Am; 2017 Sep; 142(3):1318. PubMed ID: 28964073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of infant cry through weighted linear prediction cepstral coefficients and Probabilistic Neural Network.
    Hariharan M; Chee LS; Yaacob S
    J Med Syst; 2012 Jun; 36(3):1309-15. PubMed ID: 20844933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Efficient Classification of Neonates Cry Using Extreme Gradient Boosting-Assisted Grouped-Support-Vector Network.
    Chang CY; Bhattacharya S; Raj Vincent PMD; Lakshmanna K; Srinivasan K
    J Healthc Eng; 2021; 2021():7517313. PubMed ID: 34804460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Narrative Review on Different Novel Machine Learning Techniques for Detecting Pathologies in Infants From Born Baby Cries.
    Kumari P; Mahto K
    J Voice; 2024 May; ():. PubMed ID: 38714440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of Premature Newborns' Spontaneous Cries in the Real Context of Neonatal Intensive Care Units.
    Cabon S; Met-Montot B; Porée F; Rosec O; Simon A; Carrault G
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35270967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Machine Learning Approach to Classify Biomedical Acoustic Features for Baby Cries.
    Aggarwal G; Jhajharia K; Izhar J; Kumar M; Abualigah L
    J Voice; 2023 Jul; ():. PubMed ID: 37479635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning-Based Cry Diagnostic System for Identifying Septic Newborns.
    Matikolaie FS; Tadj C
    J Voice; 2022 Feb; ():. PubMed ID: 35193790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multistage Heterogeneous Stacking Ensemble Model for Augmented Infant Cry Classification.
    Joshi VR; Srinivasan K; Vincent PMDR; Rajinikanth V; Chang CY
    Front Public Health; 2022; 10():819865. PubMed ID: 35400062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal and hypoacoustic infant cry signal classification using time-frequency analysis and general regression neural network.
    Hariharan M; Sindhu R; Yaacob S
    Comput Methods Programs Biomed; 2012 Nov; 108(2):559-69. PubMed ID: 21824676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting fundamental frequency from mel-frequency cepstral coefficients to enable speech reconstruction.
    Shao X; Milner B
    J Acoust Soc Am; 2005 Aug; 118(2):1134-43. PubMed ID: 16158667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Diseases in Newborns Using Advanced Acoustic Features of Cry Signals.
    Kheddache Y; Tadj C
    Biomed Signal Process Control; 2019; 50():35-44. PubMed ID: 33281921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expiratory and Inspiratory Cries Detection Using Different Signals' Decomposition Techniques.
    Abou-Abbas L; Tadj C; Gargour C; Montazeri L
    J Voice; 2017 Mar; 31(2):259.e13-259.e28. PubMed ID: 27567394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Two-Level Speaker Identification System via Fusion of Heterogeneous Classifiers and Complementary Feature Cooperation.
    Al-Qaderi M; Lahamer E; Rad A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic correlates of inspiratory phonation during infant cry.
    Grau SM; Robb MP; Cacace AT
    J Speech Hear Res; 1995 Apr; 38(2):373-81. PubMed ID: 7596102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of acoustic and voice quality features for the classification of infant and mother vocalizations.
    Li J; Hasegawa-Johnson M; McElwain NL
    Speech Commun; 2021 Oct; 133():41-61. PubMed ID: 36062214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiratory sounds classification using cepstral analysis and Gaussian mixture models.
    Bahoura M; Pelletier C
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():9-12. PubMed ID: 17271590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.