These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27524876)

  • 1. Signal-to-noise Enhancement in Optical Detection of Single Viruses with Multi-spot Excitation.
    Ozcelik D; Stott MA; Parks JW; Black JA; Wall TA; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2016; 22(4):. PubMed ID: 27524876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-based SiO
    Parks JW; Wall TA; Cai H; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2016; 22(6):. PubMed ID: 27547024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
    Amin MN; Ganjalizadeh V; Hamblin M; Hawkins AR; Schmidt H
    IEEE Photonics Technol Lett; 2021 Aug; 33(16):884-887. PubMed ID: 34744399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic Lab-on-a-Chip Fluorescence Sensor Using Integrated Buried ARROW (bARROW) Waveguides.
    Wall T; McMurray J; Meena G; Ganjalizadeh V; Schmidt H; Hawkins AR
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 29201455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic waveguides: I. Concepts and implementations.
    Schmidt H; Hawkins AR
    Microfluid Nanofluidics; 2008 Jan; 4(1-2):3-16. PubMed ID: 21442048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the spectral response of liquid waveguide diagnostic platforms.
    Zhao Y; Phillips B; Ozcelik D; Parks J; Measor P; Gulbransen D; Schmidt H; Hawkins AR
    J Biophotonics; 2012 Aug; 5(8-9):703-11. PubMed ID: 22589084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Detection of Single Viruses On-Chip via Hydrodynamic Focusing.
    Black JA; Hamilton E; Hueros RAR; Parks JW; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 30686911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Buried Rib SiO
    Stott MA; Ganjalizadeh V; Meena G; McMurray J; Olsen M; Orfila M; Schmidt H; Hawkins AR
    IEEE Photonics Technol Lett; 2018 Oct; 30(16):1487-1490. PubMed ID: 30618484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication, and characterization of Si-based ARROW photonic crystal bend waveguides and power splitters.
    Chen JH; Huang YT; Yang YL; Lu MF; Shieh JM
    Appl Opt; 2012 Aug; 51(24):5876-84. PubMed ID: 22907016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigating Water Absorption in Waveguides Made From Unannealed PECVD SiO
    Wall T; Hammon S; Hamilton E; Zacheu G; Orfila M; Schmidt H; Hawkins AR
    IEEE Photonics Technol Lett; 2017 May; 29(10):806-809. PubMed ID: 29200798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greatly Enhanced Single Particle Fluorescence Detection Using High Refractive Index Liquid-Core Waveguides.
    Meena GG; Wright JG; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2021; 27(5):. PubMed ID: 33994767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of Y-splitting antiresonant reflecting optical waveguides-based rib waveguides.
    Stott MA; Black J; Hamilton E; Schmidt H; Hawkins AR
    Opt Eng; 2016 Oct; 55(10):. PubMed ID: 28190900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-channel velocity multiplexing of single virus detection on an optofluidic chip.
    Black JA; Ganjalizadeh V; Parks JW; Schmidt H
    Opt Lett; 2018 Sep; 43(18):4425-4428. PubMed ID: 30211881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2008 Jan; 8(1):143-51. PubMed ID: 18094772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optofluidic waveguides: II. Fabrication and structures.
    Hawkins AR; Schmidt H
    Microfluid Nanofluidics; 2007 Jul; 4(1-2):17-32. PubMed ID: 21603122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of an integrated silicon micro flow cytometer.
    Bernini R; De Nuccio E; Brescia F; Minardo A; Zeni L; Sarro PM; Palumbo R; Scarfi MR
    Anal Bioanal Chem; 2006 Nov; 386(5):1267-72. PubMed ID: 16841207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications.
    Parks JW; Olson MA; Kim J; Ozcelik D; Cai H; Carrion R; Patterson JL; Mathies RA; Hawkins AR; Schmidt H
    Biomicrofluidics; 2014 Sep; 8(5):054111. PubMed ID: 25584111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.