BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27525160)

  • 1. Interpretation of Clinical Data Based on C4.5 Algorithm for the Diagnosis of Coronary Heart Disease.
    Wiharto W; Kusnanto H; Herianto H
    Healthc Inform Res; 2016 Jul; 22(3):186-95. PubMed ID: 27525160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligence System for Diagnosis Level of Coronary Heart Disease with K-Star Algorithm.
    Wiharto W; Kusnanto H; Herianto H
    Healthc Inform Res; 2016 Jan; 22(1):30-8. PubMed ID: 26893948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.
    Ma L; Fan S
    BMC Bioinformatics; 2017 Mar; 18(1):169. PubMed ID: 28292263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature selection and risk prediction for patients with coronary artery disease using data mining.
    Md Idris N; Chiam YK; Varathan KD; Wan Ahmad WA; Chee KH; Liew YM
    Med Biol Eng Comput; 2020 Dec; 58(12):3123-3140. PubMed ID: 33155096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Impact of Oversampling with SMOTE on the Performance of 3 Classifiers in Prediction of Type 2 Diabetes.
    Ramezankhani A; Pournik O; Shahrabi J; Azizi F; Hadaegh F; Khalili D
    Med Decis Making; 2016 Jan; 36(1):137-44. PubMed ID: 25449060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel bagging C4.5 algorithm based on wrapper feature selection for supporting wise clinical decision making.
    Lee SJ; Xu Z; Li T; Yang Y
    J Biomed Inform; 2018 Feb; 78():144-155. PubMed ID: 29137965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of infectious diseases based on chemiluminescent signatures of phagocytes in whole blood.
    Prilutsky D; Rogachev B; Marks RS; Lobel L; Last M
    Artif Intell Med; 2011 Jul; 52(3):153-63. PubMed ID: 21571512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants and development of a web-based child mortality prediction model in resource-limited settings: A data mining approach.
    Tesfaye B; Atique S; Elias N; Dibaba L; Shabbir SA; Kebede M
    Comput Methods Programs Biomed; 2017 Mar; 140():45-51. PubMed ID: 28254089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving lung cancer prognosis assessment by incorporating synthetic minority oversampling technique and score fusion method.
    Yan S; Qian W; Guan Y; Zheng B
    Med Phys; 2016 Jun; 43(6):2694-2703. PubMed ID: 27277016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of postoperative complications of pediatric cataract patients using data mining.
    Zhang K; Liu X; Jiang J; Li W; Wang S; Liu L; Zhou X; Wang L
    J Transl Med; 2019 Jan; 17(1):2. PubMed ID: 30602368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Machine-Learning-Based Prediction Method for Hypertension Outcomes Based on Medical Data.
    Chang W; Liu Y; Xiao Y; Yuan X; Xu X; Zhang S; Zhou S
    Diagnostics (Basel); 2019 Nov; 9(4):. PubMed ID: 31703364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hs-CRP is strongly associated with coronary heart disease (CHD): A data mining approach using decision tree algorithm.
    Tayefi M; Tajfard M; Saffar S; Hanachi P; Amirabadizadeh AR; Esmaeily H; Taghipour A; Ferns GA; Moohebati M; Ghayour-Mobarhan M
    Comput Methods Programs Biomed; 2017 Apr; 141():105-109. PubMed ID: 28241960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting coronary artery disease: a comparison between two data mining algorithms.
    Ayatollahi H; Gholamhosseini L; Salehi M
    BMC Public Health; 2019 Apr; 19(1):448. PubMed ID: 31035958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning applications for the prediction of surgical site infection in neurological operations.
    Tunthanathip T; Sae-Heng S; Oearsakul T; Sakarunchai I; Kaewborisutsakul A; Taweesomboonyat C
    Neurosurg Focus; 2019 Aug; 47(2):E7. PubMed ID: 31370028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chest pain in general practice: a systematic review of prediction rules.
    Harskamp RE; Laeven SC; Himmelreich JC; Lucassen WAM; van Weert HCPM
    BMJ Open; 2019 Feb; 9(2):e027081. PubMed ID: 30819715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of an algorithm to identify heart failure hospitalisations in patients with diabetes within the veterans health administration.
    Presley CA; Min JY; Chipman J; Greevy RA; Grijalva CG; Griffin MR; Roumie CL
    BMJ Open; 2018 Mar; 8(3):e020455. PubMed ID: 29581206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nursing Diagnosis of Urology Operating Room Based on New Association Classification Algorithm.
    Zhang H
    J Healthc Eng; 2022; 2022():4674959. PubMed ID: 35432827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting diabetes mellitus using SMOTE and ensemble machine learning approach: The Henry Ford ExercIse Testing (FIT) project.
    Alghamdi M; Al-Mallah M; Keteyian S; Brawner C; Ehrman J; Sakr S
    PLoS One; 2017; 12(7):e0179805. PubMed ID: 28738059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart Disease Prediction System Using Decision Tree and Naive Bayes Algorithm.
    Maheswari S; Pitchai R
    Curr Med Imaging Rev; 2019; 15(8):712-717. PubMed ID: 32008540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manifold ranking based scoring system with its application to cardiac arrest prediction: A retrospective study in emergency department patients.
    Liu T; Lin Z; Ong ME; Koh ZX; Pek PP; Yeo YK; Oh BS; Ho AF; Liu N
    Comput Biol Med; 2015 Dec; 67():74-82. PubMed ID: 26498047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.