These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27525189)

  • 21. Data Pre-Processing Using Neural Processes for Modeling Personalized Vital-Sign Time-Series Data.
    Sharma P; Shamout FE; Abrol V; Clifton DA
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1528-1537. PubMed ID: 34460406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions.
    Kusev P; van Schaik P; Tsaneva-Atanasova K; Juliusson A; Chater N
    Cogn Sci; 2018 Jan; 42(1):77-102. PubMed ID: 28382639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic.
    Castillo O; Melin P
    Chaos Solitons Fractals; 2020 Nov; 140():110242. PubMed ID: 32863616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Latent Patient Cluster Discovery for Robust Future Forecasting and New-Patient Generalization.
    Qian T; Masino AJ
    PLoS One; 2016; 11(9):e0162812. PubMed ID: 27636203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling Dynamic Systems with Efficient Ensembles of Process-Based Models.
    Simidjievski N; Todorovski L; Džeroski S
    PLoS One; 2016; 11(4):e0153507. PubMed ID: 27078633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. System dynamics modeling for municipal water demand estimation in an urban region under uncertain economic impacts.
    Qi C; Chang NB
    J Environ Manage; 2011 Jun; 92(6):1628-41. PubMed ID: 21324581
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A perturbative approach for enhancing the performance of time series forecasting.
    de Mattos Neto PS; Ferreira TA; Lima AR; Vasconcelos GC; Cavalcanti GD
    Neural Netw; 2017 Apr; 88():114-124. PubMed ID: 28236678
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Factor-Based Framework for Multivariate and Multi-step-ahead Forecasting of Large Scale Time Series.
    De Stefani J; Bontempi G
    Front Big Data; 2021; 4():690267. PubMed ID: 34568817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural Clinical Event Sequence Prediction through Personalized Online Adaptive Learning.
    Lee JM; Hauskrecht M
    Artif Intell Med Conf Artif Intell Med (2005-); 2021 Jun; 12721():175-186. PubMed ID: 34179895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling and forecasting the time series of US fertility: age distribution, range, and ultimate level.
    Lee RD
    Int J Forecast; 1993 Aug; 9(2):187-202. PubMed ID: 12319552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel LSTM for Multivariate Time Series with Massive Missingness.
    Fouladgar N; Främling K
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429370
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatio-Temporal Interpolated Echo State Network for Meteorological Series Prediction.
    Xu M; Yang Y; Han M; Qiu T; Lin H
    IEEE Trans Neural Netw Learn Syst; 2019 Jun; 30(6):1621-1634. PubMed ID: 30307877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flow-Based Spatio-Temporal Structured Prediction of Motion Dynamics.
    Zand M; Etemad A; Greenspan M
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):13523-13535. PubMed ID: 37463083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utility of Big Data in Predicting Short-Term Blood Glucose Levels in Type 1 Diabetes Mellitus Through Machine Learning Techniques.
    Rodríguez-Rodríguez I; Chatzigiannakis I; Rodríguez JV; Maranghi M; Gentili M; Zamora-Izquierdo MÁ
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31623111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Can we predict the unpredictable?
    Golestani A; Gras R
    Sci Rep; 2014 Oct; 4():6834. PubMed ID: 25355427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Concurrent, Performance-Based Methodology for Increasing the Accuracy and Certainty of Short-Term Neural Prediction Systems.
    Milić M; Milojković J; Marković I; Nikolić P
    Comput Intell Neurosci; 2019; 2019():9323482. PubMed ID: 31065257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Time series trend detection and forecasting using complex network topology analysis.
    Anghinoni L; Zhao L; Ji D; Pan H
    Neural Netw; 2019 Sep; 117():295-306. PubMed ID: 31207482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Approach to Improve the Performance of PM Forecasters.
    de Mattos Neto PS; Cavalcanti GD; Madeiro F; Ferreira TA
    PLoS One; 2015; 10(9):e0138507. PubMed ID: 26414182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.