BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27525199)

  • 1. Comparison of eri and tasar silk fibroin scaffolds for biomedical applications.
    Andiappan M; Kumari T; Sundaramoorthy S; Meiyazhagan G; Manoharan P; Venkataraman G
    Prog Biomater; 2016; 5():81-91. PubMed ID: 27525199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications.
    Andiappan M; Sundaramoorthy S; Panda N; Meiyazhaban G; Winfred SB; Venkataraman G; Krishna P
    Prog Biomater; 2013 Mar; 2(1):6. PubMed ID: 29470741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.
    Panda N; Bissoyi A; Pramanik K; Biswas A
    J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of novel electrospun nanofibrous scaffold from P. Ricini And A. Mylitta silk fibroin blend with improved surface and biological properties.
    Panda N; Bissoyi A; Pramanik K; Biswas A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():521-32. PubMed ID: 25579953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An emerging functional natural silk biomaterial from the only domesticated non-mulberry silkworm Samia ricini.
    Pal S; Kundu J; Talukdar S; Thomas T; Kundu SC
    Macromol Biosci; 2013 Aug; 13(8):1020-35. PubMed ID: 23733347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin.
    Panda NN; Biswas A; Pramanik K; Jonnalagadda S
    J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):971-82. PubMed ID: 25176408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes.
    Mandal BB; Kundu SC
    Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly.
    Naskar D; Sapru S; Ghosh AK; Reis RL; Dey T; Kundu SC
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34428758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dextrose modified flexible tasar and muga fibroin films for wound healing applications.
    Srivastava CM; Purwar R; Gupta A; Sharma D
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():104-114. PubMed ID: 28415387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications: A focus on silk fibroin-based scaffolds.
    Khademolqorani S; Tavanai H; Chronakis IS; Boisen A; Ajalloueian F
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111867. PubMed ID: 33641889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of Eri silk fibers-based sponges for biomedical application.
    Silva SS; Oliveira NM; Oliveira MB; da Costa DPS; Naskar D; Mano JF; Kundu SC; Reis RL
    Acta Biomater; 2016 Mar; 32():178-189. PubMed ID: 26766632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Study of 3D Printing-Assisted Electrospinning Technology in Producing Tissue Regeneration Polymer-Fibroin Scaffold for Ureter Repair.
    Hu HY; Wu CL; Huang CS; Bai MY; Yu DS
    Turk J Urol; 2022 Mar; 48(2):118-129. PubMed ID: 35420054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications.
    Bhardwaj N; Rajkhowa R; Wang X; Devi D
    Int J Biol Macromol; 2015 Nov; 81():31-40. PubMed ID: 26226458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering.
    Bhardwaj N; Singh YP; Devi D; Kandimalla R; Kotoky J; Mandal BB
    J Mater Chem B; 2016 Jun; 4(21):3670-3684. PubMed ID: 32263306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk fibroin film from non-mulberry tropical tasar silkworms: A novel substrate for in vitro fibroblast culture.
    Acharya C; Ghosh SK; Kundu SC
    Acta Biomater; 2009 Jan; 5(1):429-37. PubMed ID: 18676188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chinese Oak Tasar Silkworm Antheraea pernyi Silk Proteins: Current Strategies and Future Perspectives for Biomedical Applications.
    Silva SS; Kundu B; Lu S; Reis RL; Kundu SC
    Macromol Biosci; 2019 Mar; 19(3):e1800252. PubMed ID: 30294916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study.
    Park SY; Ki CS; Park YH; Jung HM; Woo KM; Kim HJ
    Tissue Eng Part A; 2010 Apr; 16(4):1271-9. PubMed ID: 19905876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silk fibroin/amniotic membrane 3D bi-layered artificial skin.
    Gholipourmalekabadi M; Samadikuchaksaraei A; Seifalian AM; Urbanska AM; Ghanbarian H; Hardy JG; Omrani MD; Mozafari M; Reis RL; Kundu SC
    Biomed Mater; 2018 Feb; 13(3):035003. PubMed ID: 29125135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.