These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27525208)

  • 1. Challenges in Accommodating Volume Change of Si Anodes for Li-Ion Batteries.
    Ko M; Chae S; Cho J
    ChemElectroChem; 2015 Nov; 2(11):1645-1651. PubMed ID: 27525208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries.
    Liu D; Liu ZJ; Li X; Xie W; Wang Q; Liu Q; Fu Y; He D
    Small; 2017 Dec; 13(45):. PubMed ID: 29024532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Considering Critical Factors of Li-rich Cathode and Si Anode Materials for Practical Li-ion Cell Applications.
    Ko M; Oh P; Chae S; Cho W; Cho J
    Small; 2015 Sep; 11(33):4058-73. PubMed ID: 26108922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-Doped SiO
    Im J; Kwon JD; Kim DH; Yoon S; Cho KY
    Small Methods; 2022 Mar; 6(3):e2101052. PubMed ID: 35312227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastable Silicon Anode by Three-Dimensional Nanoarchitecture Design.
    Huang G; Han J; Lu Z; Wei D; Kashani H; Watanabe K; Chen M
    ACS Nano; 2020 Apr; 14(4):4374-4382. PubMed ID: 32207604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter.
    Ashuri M; He Q; Shaw LL
    Nanoscale; 2016 Jan; 8(1):74-103. PubMed ID: 26612324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titanium Monoxide-Stabilized Silicon Nanoparticles with a Litchi-like Structure as an Advanced Anode for Li-ion Batteries.
    Hu J; Wang Q; Fu L; Rajagopalan R; Cui Y; Chen H; Yuan H; Tang Y; Wang H
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48467-48475. PubMed ID: 33052650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries.
    Cao C; Shyam B; Wang J; Toney MF; Steinrück HG
    Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries.
    Chae S; Choi SH; Kim N; Sung J; Cho J
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):110-135. PubMed ID: 30887635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for Controlling or Releasing the Influence Due to the Volume Expansion of Silicon inside Si-C Composite Anode for High-Performance Lithium-Ion Batteries.
    Zhang X; Weng J; Ye C; Liu M; Wang C; Wu S; Tong Q; Zhu M; Gao F
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Buffering Engineering in Silicon-Carbon Anode for Ultrastable Li-Ion Storage.
    Hou G; Cheng B; Yang Y; Du Y; Zhang Y; Li B; He J; Zhou Y; Yi D; Zhao N; Bando Y; Golberg D; Yao J; Wang X; Yuan F
    ACS Nano; 2019 Sep; 13(9):10179-10190. PubMed ID: 31424917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Road to the Frontiers of Lithium-Ion Batteries: A Review and Outlook of Graphene Anodes.
    Bi J; Du Z; Sun J; Liu Y; Wang K; Du H; Ai W; Huang W
    Adv Mater; 2023 Apr; 35(16):e2210734. PubMed ID: 36623267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing superior solid electrolyte interfaces on silicon anodes for high-performance lithium-ion batteries.
    Zhang Y; Du N; Yang D
    Nanoscale; 2019 Nov; 11(41):19086-19104. PubMed ID: 31538999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing Robust Cross-Linked Binder Networks for Silicon Anodes with Improved Lithium Storage Performance.
    Zheng Z; Gao H; Ke C; Li M; Cheng Y; Peng DL; Zhang Q; Wang MS
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53818-53828. PubMed ID: 34730928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes.
    Muraleedharan Pillai M; Kalidas N; Zhao X; Lehto VP
    Front Chem; 2022; 10():882081. PubMed ID: 35601553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-voltage liquid electrolytes for Li batteries: progress and perspectives.
    Fan X; Wang C
    Chem Soc Rev; 2021 Sep; 50(18):10486-10566. PubMed ID: 34341815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in Silicon-Based Materials for Performance-Enhanced Lithium-Ion Batteries.
    Kong X; Xi Z; Wang L; Zhou Y; Liu Y; Wang L; Li S; Chen X; Wan Z
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications.
    Feng K; Li M; Liu W; Kashkooli AG; Xiao X; Cai M; Chen Z
    Small; 2018 Feb; 14(8):. PubMed ID: 29356411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.