BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 2752535)

  • 1. Phosphate transport across the basolateral membrane of chick kidney proximal tubule cells.
    Myint S; Butterworth PJ
    Cell Biochem Funct; 1989 Jan; 7(1):43-9. PubMed ID: 2752535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of insulin-like growth factor I on phosphate transport in cultured proximal tubule cells.
    Hirschberg R; Ding H; Wanner C
    J Lab Clin Med; 1995 Nov; 126(5):428-34. PubMed ID: 7595027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate uptake by primary renal proximal tubule cell cultures grown in hormonally defined medium.
    Waqar MA; Seto J; Chung SD; Hiller-Grohol S; Taub M
    J Cell Physiol; 1985 Sep; 124(3):411-23. PubMed ID: 3850091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active lucifer yellow secretion in renal proximal tubule: evidence for organic anion transport system crossover.
    Masereeuw R; Moons MM; Toomey BH; Russel FG; Miller DS
    J Pharmacol Exp Ther; 1999 May; 289(2):1104-11. PubMed ID: 10215693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of adenosine triphosphate on phosphate uptake in renal proximal tubule cells: involvement of PKC and p38 MAPK.
    Lee YJ; Park SH; Jeung TO; Kim KW; Lee JH; Han HJ
    J Cell Physiol; 2005 Oct; 205(1):68-76. PubMed ID: 15880445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maturational effects of glucocorticoids on neonatal brush-border membrane phosphate transport.
    Arar M; Levi M; Baum M
    Pediatr Res; 1994 Apr; 35(4 Pt 1):474-8. PubMed ID: 8047384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulphate and phosphate transport in the renal proximal tubule.
    Ullrich KJ; Murer H
    Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):549-58. PubMed ID: 6130546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct effect of metolazone on sodium-dependent transport across the renal brush border membrane.
    Kempson SA; Kowalski JC; Puschett JB
    J Lab Clin Med; 1983 Feb; 101(2):308-16. PubMed ID: 6822765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorotrifluoroethylcysteine interaction with rabbit proximal tubule cell basolateral membrane organic anion transport and apical membrane amino acid transport.
    Groves CE; Morales MN
    J Pharmacol Exp Ther; 1999 Nov; 291(2):555-61. PubMed ID: 10525071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of acute phosphate depletion on isolated chick kidney tubule cells.
    Grahn MF; Butterworth PJ
    Cell Biochem Funct; 1986 Oct; 4(4):271-5. PubMed ID: 3791568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytosolic redox potential and phosphate transport in the proximal tubule of the rabbit. A study in the isolated perfused tubules.
    Yanagawa N; Nagami GT; Kurokawa K
    Miner Electrolyte Metab; 1985; 11(1):57-61. PubMed ID: 3974539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction between gluconeogenic metabolism and accumulation of phosphate by chick kidney tubule cells.
    Grahn MF; Parveen R; Butterworth PJ
    Cell Biochem Funct; 1985 Jul; 3(3):193-8. PubMed ID: 3836021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KCl co-transport across the basolateral membrane of rabbit renal proximal straight tubules.
    Sasaki S; Ishibashi K; Yoshiyama N; Shiigai T
    J Clin Invest; 1988 Jan; 81(1):194-9. PubMed ID: 3335635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of intestinal Na+-dependent phosphate co-transporters by a low-phosphate diet and 1,25-dihydroxyvitamin D3.
    Katai K; Miyamoto K; Kishida S; Segawa H; Nii T; Tanaka H; Tani Y; Arai H; Tatsumi S; Morita K; Taketani Y; Takeda E
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):705-12. PubMed ID: 10527952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to ochratoxin A impairs organic anion transport in proximal-tubule-derived opossum kidney cells.
    Sauvant C; Silbernagl S; Gekle M
    J Pharmacol Exp Ther; 1998 Oct; 287(1):13-20. PubMed ID: 9765316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamide and the regulation of renal phosphate transport.
    Kempson SA; McAteer JA; Wu KI; Bacon RA
    Prog Clin Biol Res; 1988; 258():185-93. PubMed ID: 2837771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ characterization of oxalate transport across the basolateral membrane of the proximal tubule.
    Brändle E; Bernt U; Hautmann RE
    Pflugers Arch; 1998 May; 435(6):840-9. PubMed ID: 9518514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate depletion in opossum kidney cells: apical but not basolateral or transepithelial adaptions of Pi transport.
    Barac-Nieto M; Alfred M; Spitzer A
    Exp Nephrol; 2001; 9(4):258-64. PubMed ID: 11423725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfhydryl-reactive heavy metals increase cell membrane K+ and Ca2+ transport in renal proximal tubule.
    Kone BC; Brenner RM; Gullans SR
    J Membr Biol; 1990 Jan; 113(1):1-12. PubMed ID: 2304068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NMR study of cellular phosphates and membrane transport in renal proximal tubules.
    Chobanian MC; Anderson ME; Brazy PC
    Am J Physiol; 1995 Mar; 268(3 Pt 2):F375-84. PubMed ID: 7900836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.