These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27525484)

  • 21. Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1.
    Winters MJ; Pryciak PM
    Mol Biol Cell; 2018 Mar; 29(5):669-682. PubMed ID: 29321252
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae.
    Singh V; Azad GK; Reddy M A; Baranwal S; Tomar RS
    Eur J Pharmacol; 2014 Aug; 736():77-85. PubMed ID: 24797784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of docking interactions in mediating signaling input, output, and discrimination in the yeast MAPK network.
    Reményi A; Good MC; Bhattacharyya RP; Lim WA
    Mol Cell; 2005 Dec; 20(6):951-62. PubMed ID: 16364919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A MAPK scaffold lends a helping hand.
    Seeliger MA; Kuriyan J
    Cell; 2009 Mar; 136(6):994-6. PubMed ID: 19303841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methods to Study Protein Tyrosine Phosphatases Acting on Yeast MAPKs.
    Sacristán-Reviriego A; Molina M; Martín H
    Methods Mol Biol; 2016; 1447():385-98. PubMed ID: 27514817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae.
    Martin-Yken H; Dagkessamanskaia A; Basmaji F; Lagorce A; Francois J
    Mol Microbiol; 2003 Jul; 49(1):23-35. PubMed ID: 12823808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic control of yeast MAP kinase network by induced association and dissociation between the Ste50 scaffold and the Opy2 membrane anchor.
    Yamamoto K; Tatebayashi K; Tanaka K; Saito H
    Mol Cell; 2010 Oct; 40(1):87-98. PubMed ID: 20932477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MAPK modulation of yeast pheromone signaling output and the role of phosphorylation sites in the scaffold protein Ste5.
    Winters MJ; Pryciak PM
    Mol Biol Cell; 2019 Apr; 30(8):1037-1049. PubMed ID: 30726174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast go the whole HOG for the hyperosmotic response.
    O'Rourke SM; Herskowitz I; O'Shea EK
    Trends Genet; 2002 Aug; 18(8):405-12. PubMed ID: 12142009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple synthetic protein scaffolds can create adjustable artificial MAPK circuits in yeast and mammalian cells.
    Ryu J; Park SH
    Sci Signal; 2015 Jun; 8(383):ra66. PubMed ID: 26126717
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatiotemporal regulation of the p42/p44 MAPK pathway.
    Volmat V; Pouysségur J
    Biol Cell; 2001 Sep; 93(1-2):71-9. PubMed ID: 11730325
    [No Abstract]   [Full Text] [Related]  

  • 32. Direct interaction of Ste11 and Mkk1/2 through Nst1 integrates high-osmolarity glycerol and pheromone pathways to the cell wall integrity MAPK pathway.
    Leng G; Song K
    FEBS Lett; 2016 Jan; 590(1):148-60. PubMed ID: 26787465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive HOG1 allele.
    Westfall PJ; Thorner J
    Eukaryot Cell; 2006 Aug; 5(8):1215-28. PubMed ID: 16896207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RNA Recognition-like Motifs Activate a Mitogen-Activated Protein Kinase.
    Phillips T; Tio CW; Omerza G; Rimal A; Lokareddy RK; Cingolani G; Winter E
    Biochemistry; 2018 Dec; 57(50):6878-6887. PubMed ID: 30452242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specificity of MAP kinase signaling in yeast differentiation involves transient versus sustained MAPK activation.
    Sabbagh W; Flatauer LJ; Bardwell AJ; Bardwell L
    Mol Cell; 2001 Sep; 8(3):683-91. PubMed ID: 11583629
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism.
    Bayram Ö; Bayram ÖS; Ahmed YL; Maruyama J; Valerius O; Rizzoli SO; Ficner R; Irniger S; Braus GH
    PLoS Genet; 2012; 8(7):e1002816. PubMed ID: 22829779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The UV response in Saccharomyces cerevisiae involves the mitogen-activated protein kinase Slt2p.
    Bryan BA; Knapp GS; Bowen LM; Polymenis M
    Curr Microbiol; 2004 Jul; 49(1):32-4. PubMed ID: 15297927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of mitogen-activated protein kinase activity in yeast.
    Elion EA; Sahoo R
    Methods Mol Biol; 2010; 661():387-99. PubMed ID: 20811996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tolerance to thermal and reductive stress in Saccharomyces cerevisiae is amenable to regulation by phosphorylation-dephosphorylation of ubiquitin conjugating enzyme 1 (Ubc1) S97 and S115.
    Meena RC; Thakur S; Nath S; Chakrabarti A
    Yeast; 2011 Nov; 28(11):783-93. PubMed ID: 21996927
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative profiling of dual phosphorylation of Fus3 MAP kinase in Saccharomyces cerevisiae.
    Hur JY; Kang GY; Choi MY; Jung JW; Kim KP; Park SH
    Mol Cells; 2008 Jul; 26(1):41-7. PubMed ID: 18596411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.