These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27525503)

  • 1. Monitoring the Switching of Single BSA-ATTO 488 Molecules Covalently End-Attached to a pH-Responsive PAA Brush.
    Akkilic N; Molenaar R; Claessens MM; Blum C; de Vos WM
    Langmuir; 2016 Sep; 32(35):8803-11. PubMed ID: 27525503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments.
    Aulich D; Hoy O; Luzinov I; Brücher M; Hergenröder R; Bittrich E; Eichhorn KJ; Uhlmann P; Stamm M; Esser N; Hinrichs K
    Langmuir; 2010 Aug; 26(15):12926-32. PubMed ID: 20602533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling pH-responsive polymer brushes to electricity: switching thickness and creating waves of swelling or collapse.
    Dunderdale GJ; Fairclough JP
    Langmuir; 2013 Mar; 29(11):3628-35. PubMed ID: 23441938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-induced swelling and deswelling of weak polybase brushes.
    Weir MP; Heriot SY; Martin SJ; Parnell AJ; Holt SA; Webster JR; Jones RA
    Langmuir; 2011 Sep; 27(17):11000-7. PubMed ID: 21793596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization.
    Hollmann O; Czeslik C
    Langmuir; 2006 Mar; 22(7):3300-5. PubMed ID: 16548592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and protein binding capacity of a planar PAA brush.
    Hollmann O; Gutberlet T; Czeslik C
    Langmuir; 2007 Jan; 23(3):1347-53. PubMed ID: 17241057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ infrared ellipsometric study of stimuli-responsive mixed polyelectrolyte brushes.
    Mikhaylova Y; Ionov L; Rappich J; Gensch M; Esser N; Minko S; Eichhorn KJ; Stamm M; Hinrichs K
    Anal Chem; 2007 Oct; 79(20):7676-82. PubMed ID: 17877422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching 'smart' drug delivery systems.
    Motornov M; Tam TK; Pita M; Tokarev I; Katz E; Minko S
    Nanotechnology; 2009 Oct; 20(43):434006. PubMed ID: 19801770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.
    Dong R; Krishnan S; Baird BA; Lindau M; Ober CK
    Biomacromolecules; 2007 Oct; 8(10):3082-92. PubMed ID: 17880179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Dissociation of Carboxylic Acid Groups in a Weak Polyelectrolyte Brush Depend on Their Distance from the Substrate.
    Ehtiati K; Moghaddam SZ; Daugaard AE; Thormann E
    Langmuir; 2020 Mar; 36(9):2339-2348. PubMed ID: 32069409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanowear studies in reversibly switchable polystyrene-poly(acrylic acid) mixed brushes.
    Vyas MK; Nandan B; Schneider K; Stamm M
    J Colloid Interface Sci; 2008 Dec; 328(1):58-66. PubMed ID: 18834596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responsive polymer brushes for controlled nanoparticle exposure.
    Akkilic N; Leermakers FA; de Vos WM
    Nanoscale; 2015 Nov; 7(42):17871-8. PubMed ID: 26462550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responsive Adsorption of
    Sudre G; Siband E; Gallas B; Cousin F; Hourdet D; Tran Y
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Characterization of Binary Mixed Polymer Brush-Grafted Silica Nanoparticles in Aqueous and Organic Solvents by Cryo-Electron Tomography.
    Fox TL; Tang S; Horton JM; Holdaway HA; Zhao B; Zhu L; Stewart PL
    Langmuir; 2015 Aug; 31(31):8680-8. PubMed ID: 26174179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of calmodulin with poly(acrylic acid) brushes: Effects of high pressure, pH-value and ligand binding.
    Levin A; Czeslik C
    Colloids Surf B Biointerfaces; 2018 Nov; 171():478-484. PubMed ID: 30077905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and structural changes in a pH-responsive mixed polyelectrolyte brush studied by infrared ellipsometry.
    Hinrichs K; Aulich D; Ionov L; Esser N; Eichhorn KJ; Motornov M; Stamm M; Minko S
    Langmuir; 2009 Sep; 25(18):10987-91. PubMed ID: 19572506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study.
    Bittrich E; Rodenhausen KB; Eichhorn KJ; Hofmann T; Schubert M; Stamm M; Uhlmann P
    Biointerphases; 2010 Dec; 5(4):159-67. PubMed ID: 21219037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.
    Borisova OV; Billon L; Richter RP; Reimhult E; Borisov OV
    Langmuir; 2015 Jul; 31(27):7684-94. PubMed ID: 26070329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tuning Bacterial Attachment and Detachment via the Thickness and Dispersity of a pH-Responsive Polymer Brush.
    Yadav V; Jaimes-Lizcano YA; Dewangan NK; Park N; Li TH; Robertson ML; Conrad JC
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44900-44910. PubMed ID: 29215264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.