These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27525513)

  • 1. Ultrathin Epitaxial Silicon Solar Cells with Inverted Nanopyramid Arrays for Efficient Light Trapping.
    Gaucher A; Cattoni A; Dupuis C; Chen W; Cariou R; Foldyna M; Lalouat L; Drouard E; Seassal C; Roca I Cabarrocas P; Collin S
    Nano Lett; 2016 Sep; 16(9):5358-64. PubMed ID: 27525513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.
    Zhou S; Yang Z; Gao P; Li X; Yang X; Wang D; He J; Ying Z; Ye J
    Nanoscale Res Lett; 2016 Dec; 11(1):194. PubMed ID: 27071681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post passivation light trapping back contacts for silicon heterojunction solar cells.
    Smeets M; Bittkau K; Lentz F; Richter A; Ding K; Carius R; Rau U; Paetzold UW
    Nanoscale; 2016 Nov; 8(44):18726-18733. PubMed ID: 27787533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
    Mavrokefalos A; Han SE; Yerci S; Branham MS; Chen G
    Nano Lett; 2012 Jun; 12(6):2792-6. PubMed ID: 22612694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopyramid structure for ultrathin c-Si tandem solar cells.
    Li G; Li H; Ho JY; Wong M; Kwok HS
    Nano Lett; 2014 May; 14(5):2563-8. PubMed ID: 24730470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light trapping in ultrathin 25  μm exfoliated Si solar cells.
    Hilali MM; Saha S; Onyegam E; Rao R; Mathew L; Banerjee SK
    Appl Opt; 2014 Sep; 53(27):6140-7. PubMed ID: 25322089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.
    Varlamov S; Rao J; Soderstrom T
    J Vis Exp; 2012 Jul; (65):. PubMed ID: 22805108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Resonant Mie Resonator Arrays for Broadband Light Trapping in Ultrathin c-Si Solar Cells.
    Lee N; Xue M; Hong J; van de Groep J; Brongersma ML
    Adv Mater; 2023 Jul; 35(29):e2210941. PubMed ID: 37129216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored disorder: a self-organized photonic contact for light trapping in silicon-based tandem solar cells.
    Hauser H; Mühlbach K; Höhn O; Müller R; Seitz S; Rühe J; Glunz SW; Bläsi B
    Opt Express; 2020 Apr; 28(8):10909-10918. PubMed ID: 32403612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopatterned Back-Reflector with Engineered Near-Field/Far-Field Light Scattering for Enhanced Light Trapping in Silicon-Based Multijunction Solar Cells.
    Cordaro A; Müller R; Tabernig SW; Tucher N; Schygulla P; Höhn O; Bläsi B; Polman A
    ACS Photonics; 2023 Nov; 10(11):4061-4070. PubMed ID: 38027248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light trapping in randomly arranged silicon nanorocket arrays for photovoltaic applications.
    Zhang FQ; Peng KQ; Sun RN; Hu Y; Lee ST
    Nanotechnology; 2015 Sep; 26(37):375401. PubMed ID: 26303032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells.
    Zhang Y; Jia B; Gu M
    Opt Express; 2016 Mar; 24(6):A506-14. PubMed ID: 27136871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure.
    Zhang C; Chen L; Zhu Y; Guan Z
    Nanoscale Res Lett; 2018 Apr; 13(1):91. PubMed ID: 29616361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells.
    Chen TG; Yu P; Tsai YL; Shen CH; Shieh JM; Tsai MA; Kuo HC
    Opt Express; 2012 May; 20(10):A412-7. PubMed ID: 22712090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns.
    van Lare C; Yin G; Polman A; Schmid M
    ACS Nano; 2015 Oct; 9(10):9603-13. PubMed ID: 26348324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light trapping in silicon nanowire solar cells.
    Garnett E; Yang P
    Nano Lett; 2010 Mar; 10(3):1082-7. PubMed ID: 20108969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid silicon honeycomb/organic solar cells with enhanced efficiency using surface etching.
    Liu R; Sun T; Liu J; Wu S; Sun B
    Nanotechnology; 2016 Jun; 27(25):254006. PubMed ID: 27181455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fair comparison between ultrathin crystalline-silicon solar cells with either periodic or correlated disorder inverted pyramid textures.
    Muller J; Herman A; Mayer A; Deparis O
    Opt Express; 2015 Jun; 23(11):A657-70. PubMed ID: 26072890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.