BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 27525807)

  • 1. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
    Cherobin GB; Voegels RL; Gebrim EMMS; Garcia GJM
    PLoS One; 2018; 13(11):e0207178. PubMed ID: 30444909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.
    Wakayama T; Suzuki M; Tanuma T
    PLoS One; 2016; 11(3):e0150951. PubMed ID: 26943335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The research progress of nasal airflow dynamics].
    Wei J; Li L
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Apr; 31(8):647-649. PubMed ID: 29871337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying patients who may benefit from inferior turbinate reduction using computer simulations.
    Hariri BM; Rhee JS; Garcia GJ
    Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction.
    Sullivan CD; Garcia GJ; Frank-Ito DO; Kimbell JS; Rhee JS
    Otolaryngol Head Neck Surg; 2014 Jan; 150(1):139-47. PubMed ID: 24154749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Nasal Valve Shape on Downstream Volume, Airflow, and Pressure Drop: Importance of the Nasal Valve Revisited.
    Naughton JP; Lee AY; Ramos E; Wootton D; Stupak HD
    Ann Otol Rhinol Laryngol; 2018 Nov; 127(11):745-753. PubMed ID: 30191730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico investigation of sneezing in a full real human upper airway using computational fluid dynamics method.
    Mortazavy Beni H; Hassani K; Khorramymehr S
    Comput Methods Programs Biomed; 2019 Aug; 177():203-209. PubMed ID: 31319949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating the nasal cycle with computational fluid dynamics.
    Patel RG; Garcia GJ; Frank-Ito DO; Kimbell JS; Rhee JS
    Otolaryngol Head Neck Surg; 2015 Feb; 152(2):353-60. PubMed ID: 25450411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computed nasal resistance compared with patient-reported symptoms in surgically treated nasal airway passages: a preliminary report.
    Kimbell JS; Garcia GJ; Frank DO; Cannon DE; Pawar SS; Rhee JS
    Am J Rhinol Allergy; 2012; 26(3):e94-8. PubMed ID: 22643935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between flow resistance and geometry in a model of the human nose.
    Schreck S; Sullivan KJ; Ho CM; Chang HK
    J Appl Physiol (1985); 1993 Oct; 75(4):1767-75. PubMed ID: 8282630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis.
    Wang T; Chen D; Wang PH; Chen J; Deng J
    Braz J Med Biol Res; 2016 Aug; 49(9):e5182. PubMed ID: 27533764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
    Frank-Ito DO; Kimbell JS; Borojeni AAT; Garcia GJM; Rhee JS
    Clin Biomech (Bristol, Avon); 2019 Jan; 61():172-180. PubMed ID: 30594764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of Nasal Airway and Nasal Breathing Evaluation.
    Xavier R
    Facial Plast Surg; 2024 Jun; 40(3):268-274. PubMed ID: 38331036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New CFD tools to evaluate nasal airflow.
    Burgos MA; Sanmiguel-Rojas E; Del Pino C; Sevilla-García MA; Esteban-Ortega F
    Eur Arch Otorhinolaryngol; 2017 Aug; 274(8):3121-3128. PubMed ID: 28547013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional relevance of computational fluid dynamics in the field of nasal obstruction: A literature review.
    Radulesco T; Meister L; Bouchet G; Giordano J; Dessi P; Perrier P; Michel J
    Clin Otolaryngol; 2019 Sep; 44(5):801-809. PubMed ID: 31233660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Impact of Adhesions on Nasal Airflow: A Quantitative Analysis Using Computational Fluid Dynamics.
    Senanayake P; Warfield-McAlpine P; Salati H; Bradshaw K; Wong E; Inthavong K; Singh N
    Am J Rhinol Allergy; 2023 May; 37(3):273-283. PubMed ID: 36373577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study.
    Alam S; Li C; Bradburn KH; Zhao K; Lee TS
    Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.