These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 27525846)

  • 1. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering.
    Wang ZH; Zhang J; Zhang Q; Gao Y; Yan J; Zhao XY; Yang YY; Kong DM; Zhao J; Shi YX; Li XL
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage tissue engineering with demineralized bone matrix gelatin and fibrin glue hybrid scaffold: an in vitro study.
    Wang ZH; He XJ; Yang ZQ; Tu JB
    Artif Organs; 2010 Feb; 34(2):161-6. PubMed ID: 20420593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold.
    Yang B; Yin Z; Cao J; Shi Z; Zhang Z; Song H; Liu F; Caterson B
    Biomed Mater; 2010 Aug; 5(4):045003. PubMed ID: 20539056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen scaffold for cartilage tissue engineering: the benefit of fibrin glue and the proper culture time in an infant cartilage model.
    Deponti D; Di Giancamillo A; Gervaso F; Domenicucci M; Domeneghini C; Sannino A; Peretti GM
    Tissue Eng Part A; 2014 Mar; 20(5-6):1113-26. PubMed ID: 24152291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering.
    Oliveira JT; Crawford A; Mundy JL; Sol PC; Correlo VM; Bhattacharya M; Neves NM; Hatton PV; Reis RL
    J Biomater Sci Polym Ed; 2011; 22(4-6):773-88. PubMed ID: 20566057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic compression modulates chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds.
    Wang PY; Chow HH; Lai JY; Liu HL; Tsai WB
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):143-52. PubMed ID: 19399846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor].
    Wang N; Chen J; Zhang G; Chai W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):786-92. PubMed ID: 24063164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering.
    Li X; Jin L; Balian G; Laurencin CT; Greg Anderson D
    Biomaterials; 2006 Apr; 27(11):2426-33. PubMed ID: 16343611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G
    J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Tissue engineered cartilage using chitosan/gelatin and normal or post-RNA interference-chondrocytes in vitro].
    Wang Z; Wu B; Mustafa K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jan; 26(1):106-11. PubMed ID: 22332531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage.
    Sawatjui N; Limpaiboon T; Schrobback K; Klein T
    J Tissue Eng Regen Med; 2018 May; 12(5):1220-1229. PubMed ID: 29489056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the results of real-time polymerase chain reaction.
    Chou CH; Cheng WT; Kuo TF; Sun JS; Lin FH; Tsai JC
    J Biomed Mater Res A; 2007 Sep; 82(3):757-67. PubMed ID: 17326136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis.
    Li J; Zhao Q; Wang E; Zhang C; Wang G; Yuan Q
    J Cell Physiol; 2012 May; 227(5):2003-12. PubMed ID: 21751209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anisotropic Chitosan Scaffolds Generated by Electrostatic Flocking Combined with Alginate Hydrogel Support Chondrogenic Differentiation.
    Gossla E; Bernhardt A; Tonndorf R; Aibibu D; Cherif C; Gelinsky M
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.
    Kreuz PC; Gentili C; Samans B; Martinelli D; Krüger JP; Mittelmeier W; Endres M; Cancedda R; Kaps C
    Osteoarthritis Cartilage; 2013 Dec; 21(12):1997-2005. PubMed ID: 24096178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Sox9-overexpressing human umbilical cord blood-derived mesenchymal stem cells-based engineered cartilage both in vitro and in vivo.
    Li XL; Zhang J; Luo HN; Zhao XY; Zhang AL; Wang ZH
    J Biomed Mater Res A; 2017 Apr; 105(4):1150-1155. PubMed ID: 28028895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis.
    Munirah S; Kim SH; Ruszymah BH; Khang G
    Eur Cell Mater; 2008 Feb; 15():41-52. PubMed ID: 18288632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.