BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27525846)

  • 1. Evaluation of bone matrix gelatin/fibrin glue and chitosan/gelatin composite scaffolds for cartilage tissue engineering.
    Wang ZH; Zhang J; Zhang Q; Gao Y; Yan J; Zhao XY; Yang YY; Kong DM; Zhao J; Shi YX; Li XL
    Genet Mol Res; 2016 Jul; 15(3):. PubMed ID: 27525846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cartilage tissue engineering with demineralized bone matrix gelatin and fibrin glue hybrid scaffold: an in vitro study.
    Wang ZH; He XJ; Yang ZQ; Tu JB
    Artif Organs; 2010 Feb; 34(2):161-6. PubMed ID: 20420593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold.
    Yang B; Yin Z; Cao J; Shi Z; Zhang Z; Song H; Liu F; Caterson B
    Biomed Mater; 2010 Aug; 5(4):045003. PubMed ID: 20539056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen scaffold for cartilage tissue engineering: the benefit of fibrin glue and the proper culture time in an infant cartilage model.
    Deponti D; Di Giancamillo A; Gervaso F; Domenicucci M; Domeneghini C; Sannino A; Peretti GM
    Tissue Eng Part A; 2014 Mar; 20(5-6):1113-26. PubMed ID: 24152291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering.
    Oliveira JT; Crawford A; Mundy JL; Sol PC; Correlo VM; Bhattacharya M; Neves NM; Hatton PV; Reis RL
    J Biomater Sci Polym Ed; 2011; 22(4-6):773-88. PubMed ID: 20566057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic compression modulates chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds.
    Wang PY; Chow HH; Lai JY; Liu HL; Tsai WB
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):143-52. PubMed ID: 19399846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor].
    Wang N; Chen J; Zhang G; Chai W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):786-92. PubMed ID: 24063164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice].
    Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demineralized bone matrix gelatin as scaffold for osteochondral tissue engineering.
    Li X; Jin L; Balian G; Laurencin CT; Greg Anderson D
    Biomaterials; 2006 Apr; 27(11):2426-33. PubMed ID: 16343611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G
    J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Tissue engineered cartilage using chitosan/gelatin and normal or post-RNA interference-chondrocytes in vitro].
    Wang Z; Wu B; Mustafa K
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Jan; 26(1):106-11. PubMed ID: 22332531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrin glue mixed with gelatin/hyaluronic acid/chondroitin-6-sulfate tri-copolymer for articular cartilage tissue engineering: the results of real-time polymerase chain reaction.
    Chou CH; Cheng WT; Kuo TF; Sun JS; Lin FH; Tsai JC
    J Biomed Mater Res A; 2007 Sep; 82(3):757-67. PubMed ID: 17326136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis.
    Li J; Zhao Q; Wang E; Zhang C; Wang G; Yuan Q
    J Cell Physiol; 2012 May; 227(5):2003-12. PubMed ID: 21751209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage.
    Kreuz PC; Gentili C; Samans B; Martinelli D; Krüger JP; Mittelmeier W; Endres M; Cancedda R; Kaps C
    Osteoarthritis Cartilage; 2013 Dec; 21(12):1997-2005. PubMed ID: 24096178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Sox9-overexpressing human umbilical cord blood-derived mesenchymal stem cells-based engineered cartilage both in vitro and in vivo.
    Li XL; Zhang J; Luo HN; Zhao XY; Zhang AL; Wang ZH
    J Biomed Mater Res A; 2017 Apr; 105(4):1150-1155. PubMed ID: 28028895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis.
    Munirah S; Kim SH; Ruszymah BH; Khang G
    Eur Cell Mater; 2008 Feb; 15():41-52. PubMed ID: 18288632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pericellular plasma clot negates the influence of scaffold stiffness on chondrogenic differentiation.
    Arora A; Kothari A; Katti DS
    Acta Biomater; 2016 Dec; 46():68-78. PubMed ID: 27693666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures.
    Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ
    Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.