These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 27525846)
41. Enhanced chondrogenesis of adipose-derived stem cells by the controlled release of transforming growth factor-beta1 from hybrid microspheres. Han Y; Wei Y; Wang S; Song Y Gerontology; 2009; 55(5):592-9. PubMed ID: 19672054 [TBL] [Abstract][Full Text] [Related]
42. Assessment of chondrogenic differentiation potential of autologous activated peripheral blood stem cells on human early osteoarthritic cancellous tibial bone scaffold. Turajane T; Thitiset T; Honsawek S; Chaveewanakorn U; Aojanepong J; Papadopoulos KI Musculoskelet Surg; 2014 Jun; 98(1):35-43. PubMed ID: 24178764 [TBL] [Abstract][Full Text] [Related]
43. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Nettles DL; Elder SH; Gilbert JA Tissue Eng; 2002 Dec; 8(6):1009-16. PubMed ID: 12542946 [TBL] [Abstract][Full Text] [Related]
44. Growth of human septal chondrocytes in fibrin scaffolds. Watson D; Sage A; Chang AA; Schumacher BL; Sah RL Am J Rhinol Allergy; 2010; 24(1):e19-22. PubMed ID: 20109313 [TBL] [Abstract][Full Text] [Related]
45. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Correia CR; Moreira-Teixeira LS; Moroni L; Reis RL; van Blitterswijk CA; Karperien M; Mano JF Tissue Eng Part C Methods; 2011 Jul; 17(7):717-30. PubMed ID: 21517692 [TBL] [Abstract][Full Text] [Related]
46. Recombinant human type II collagen as a material for cartilage tissue engineering. Pulkkinen HJ; Tiitu V; Valonen P; Hamalainen ER; Lammi MJ; Kiviranta I Int J Artif Organs; 2008 Nov; 31(11):960-9. PubMed ID: 19089798 [TBL] [Abstract][Full Text] [Related]
47. [BIOCOMPATIBILITY OF POROUS POLY LACTIC ACID/BONE MATRIX GELATIN COMPOSITE BIOMATERIALS FOR BONE REPAIR]. Zhang Y; Li J; Niu X; Liu J; Wang J; Gao L Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Feb; 30(2):251-7. PubMed ID: 27276824 [TBL] [Abstract][Full Text] [Related]
48. Nano-hydroxy apatite/chitosan/gelatin scaffolds enriched by a combination of platelet-rich plasma and fibrin glue enhance proliferation and differentiation of seeded human dental pulp stem cells. Sadeghinia A; Davaran S; Salehi R; Jamalpoor Z Biomed Pharmacother; 2019 Jan; 109():1924-1931. PubMed ID: 30551447 [TBL] [Abstract][Full Text] [Related]
49. Chondrogenic properties of primary human chondrocytes culture in hyaluronic acid treated gelatin scaffold. Pruksakorn D; Khamwaen N; Pothacharoen P; Arpornchayanon O; Rojanasthien S; Kongtawelert P J Med Assoc Thai; 2009 Apr; 92(4):483-90. PubMed ID: 19374298 [TBL] [Abstract][Full Text] [Related]
50. Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Chomchalao P; Pongcharoen S; Sutheerawattananonda M; Tiyaboonchai W Biomed Eng Online; 2013 Apr; 12():28. PubMed ID: 23566031 [TBL] [Abstract][Full Text] [Related]
51. In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Whu SW; Hung KC; Hsieh KH; Chen CH; Tsai CL; Hsu SH Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2855-63. PubMed ID: 23623106 [TBL] [Abstract][Full Text] [Related]
52. Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Park SH; Park SR; Chung SI; Pai KS; Min BH Artif Organs; 2005 Oct; 29(10):838-45. PubMed ID: 16185347 [TBL] [Abstract][Full Text] [Related]
53. Gelatin-based haemostyptic Spongostan as a possible three-dimensional scaffold for a chondrocyte matrix?: an experimental study with bovine chondrocytes. Anders JO; Mollenhauer J; Beberhold A; Kinne RW; Venbrocks RA J Bone Joint Surg Br; 2009 Mar; 91(3):409-16. PubMed ID: 19258622 [TBL] [Abstract][Full Text] [Related]
54. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942 [TBL] [Abstract][Full Text] [Related]
55. Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold. Wang CC; Yang KC; Lin KH; Liu YL; Liu HC; Lin FH Biomaterials; 2012 Jan; 33(1):120-7. PubMed ID: 21982587 [TBL] [Abstract][Full Text] [Related]
56. Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. Jung Y; Kim SH; Kim SH; Kim YH; Xie J; Matsuda T; Min BG J Biomater Sci Polym Ed; 2008; 19(1):61-74. PubMed ID: 18177554 [TBL] [Abstract][Full Text] [Related]
58. Scaffold-free approach produces neocartilage tissue of similar quality as the use of HyStem™ and Hydromatrix™ scaffolds. Ylärinne JH; Qu C; Lammi MJ J Mater Sci Mater Med; 2017 Apr; 28(4):59. PubMed ID: 28210971 [TBL] [Abstract][Full Text] [Related]
59. A synthetic scaffold favoring chondrogenic phenotype over a natural scaffold. Mohan N; Nair PD Tissue Eng Part A; 2010 Feb; 16(2):373-84. PubMed ID: 19566439 [TBL] [Abstract][Full Text] [Related]
60. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]