These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27525951)

  • 41. Exploration of N-(2-aminoethyl)piperidine-4-carboxamide as a potential scaffold for development of VEGFR-2, ERK-2 and Abl-1 multikinase inhibitor.
    Jin F; Gao D; Wu Q; Liu F; Chen Y; Tan C; Jiang Y
    Bioorg Med Chem; 2013 Sep; 21(18):5694-706. PubMed ID: 23932071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Antitumor Activity and Mechanism of Robustic Acid from
    Huang J; Liang Y; Tian W; Ma J; Huang L; Li B; Chen R; Li D
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32867345
    [No Abstract]   [Full Text] [Related]  

  • 43. Interaction of marine Streptomyces compounds with selected cancer drug target proteins by in silico molecular docking studies.
    Lankapalli AR; Kannabiran K
    Interdiscip Sci; 2013 Mar; 5(1):37-44. PubMed ID: 23605638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of alpha-glucosidase inhibitors.
    Bharatham K; Bharatham N; Park KH; Lee KW
    J Mol Graph Model; 2008 Jun; 26(8):1202-12. PubMed ID: 18096420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of potential Gly/NMDA receptor antagonists by cheminformatics approach: a combination of pharmacophore modelling, virtual screening and molecular docking studies.
    Ugale VG; Bari SB
    SAR QSAR Environ Res; 2016; 27(2):125-45. PubMed ID: 26911562
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pharmacophore based virtual screening, molecular docking studies to design potent heat shock protein 90 inhibitors.
    Sakkiah S; Thangapandian S; John S; Lee KW
    Eur J Med Chem; 2011 Jul; 46(7):2937-47. PubMed ID: 21531051
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A combined molecular docking-based and pharmacophore-based target prediction strategy with a probabilistic fusion method for target ranking.
    Li GB; Yang LL; Xu Y; Wang WJ; Li LL; Yang SY
    J Mol Graph Model; 2013 Jul; 44():278-85. PubMed ID: 23933279
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacophore filtering and 3D-QSAR in the discovery of new JAK2 inhibitors.
    Dhanachandra Singh Kh; Karthikeyan M; Kirubakaran P; Nagamani S
    J Mol Graph Model; 2011 Sep; 30():186-97. PubMed ID: 21831680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy.
    Clement OO; Freeman CM; Hartmann RW; Handratta VD; Vasaitis TS; Brodie AM; Njar VC
    J Med Chem; 2003 Jun; 46(12):2345-51. PubMed ID: 12773039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of plant-derived phytochemicals as anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2.
    Sarkar B; Ullah MA; Islam SS; Rahman MH; Araf Y
    J Recept Signal Transduct Res; 2021 Jun; 41(3):217-233. PubMed ID: 32787531
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling compound-target interaction network of traditional Chinese medicines for type II diabetes mellitus: insight for polypharmacology and drug design.
    Tian S; Li Y; Li D; Xu X; Wang J; Zhang Q; Hou T
    J Chem Inf Model; 2013 Jul; 53(7):1787-803. PubMed ID: 23768230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Implementation of pseudoreceptor-based pharmacophore queries in the prediction of probable protein targets: explorations in the protein structural profile of Zea mays.
    Kumar SP; Jha PC; Pandya HA; Jasrai YT
    Mol Biosyst; 2014 Jul; 10(7):1833-44. PubMed ID: 24756543
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A combination of 2D similarity search, pharmacophore, and molecular docking techniques for the identification of vascular endothelial growth factor receptor-2 inhibitors.
    Ai G; Tian C; Deng D; Fida G; Chen H; Ma Y; Ding L; Gu Y
    Anticancer Drugs; 2015 Apr; 26(4):399-409. PubMed ID: 25569705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discovery of biphenyl-aryl ureas as novel VEGFR-2 inhibitors. Part 4: exploration of diverse hinge-binding fragments.
    Su P; Wang J; Shi Y; Pan X; Shao R; Zhang J
    Bioorg Med Chem; 2015 Jul; 23(13):3228-36. PubMed ID: 25982075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pharmacophore modeling and virtual screening to identify potential RET kinase inhibitors.
    Shih KC; Shiau CW; Chen TS; Ko CH; Lin CL; Lin CY; Hwang CS; Tang CY; Chen WR; Huang JW
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4490-7. PubMed ID: 21724393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping the binding site of a large set of quinazoline type EGF-R inhibitors using molecular field analyses and molecular docking studies.
    Hou T; Zhu L; Chen L; Xu X
    J Chem Inf Comput Sci; 2003; 43(1):273-87. PubMed ID: 12546563
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis, structure-activity relationship, and pharmacophore modeling studies of pyrazole-3-carbohydrazone derivatives as dipeptidyl peptidase IV inhibitors.
    Wu D; Jin F; Lu W; Zhu J; Li C; Wang W; Tang Y; Jiang H; Huang J; Liu G; Li J
    Chem Biol Drug Des; 2012 Jun; 79(6):897-906. PubMed ID: 22381062
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of interactions and volume variation in discriminating active and inactive forms of cyclin-dependent kinase-2 inhibitor complexes.
    Saranya N; Selvaraj S
    Chem Biol Drug Des; 2011 Sep; 78(3):361-9. PubMed ID: 21599856
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Homology modeling of T. cruzi and L. major NADH-dependent fumarate reductases: ligand docking, molecular dynamics validation, and insights on their binding modes.
    Merlino A; Vieites M; Gambino D; Coitiño EL
    J Mol Graph Model; 2014 Mar; 48():47-59. PubMed ID: 24370672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.