BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27525976)

  • 1. DSBCapture: in situ capture and sequencing of DNA breaks.
    Lensing SV; Marsico G; Hänsel-Hertsch R; Lam EY; Tannahill D; Balasubramanian S
    Nat Methods; 2016 Oct; 13(10):855-7. PubMed ID: 27525976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a novel method to create double-strand break repair fingerprints using next-generation sequencing.
    Soong CP; Breuer GA; Hannon RA; Kim SD; Salem AF; Wang G; Yu R; Carriero NJ; Bjornson R; Sundaram RK; Bindra RS
    DNA Repair (Amst); 2015 Feb; 26():44-53. PubMed ID: 25547252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin.
    Cannan WJ; Pederson DS
    J Cell Physiol; 2016 Jan; 231(1):3-14. PubMed ID: 26040249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complexity of DNA double strand breaks is a critical factor enhancing end-resection.
    Yajima H; Fujisawa H; Nakajima NI; Hirakawa H; Jeggo PA; Okayasu R; Fujimori A
    DNA Repair (Amst); 2013 Nov; 12(11):936-46. PubMed ID: 24041488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease.
    Hays E; Nettleton E; Carter C; Morales M; Vo L; Passo M; Vélez-Cruz R
    Cell Cycle; 2020 Nov; 19(22):3096-3114. PubMed ID: 33044911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase resolution.
    Mourad R; Ginalski K; Legube G; Cuvier O
    Genome Biol; 2018 Mar; 19(1):34. PubMed ID: 29544533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks.
    Kendek A; Wensveen MR; Janssen A
    Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Analysis of DNA Break-Induced Chromosome Rearrangements by Amplicon Sequencing.
    Brown AJ; Al-Soodani AT; Saul M; Her S; Garcia JC; Ramsden DA; Her C; Roberts SA
    Methods Enzymol; 2018; 601():111-144. PubMed ID: 29523230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Breaks and End Resection Measured Genome-wide by End Sequencing.
    Canela A; Sridharan S; Sciascia N; Tubbs A; Meltzer P; Sleckman BP; Nussenzweig A
    Mol Cell; 2016 Sep; 63(5):898-911. PubMed ID: 27477910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair.
    Gursoy-Yuzugullu O; Ayrapetov MK; Price BD
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7507-12. PubMed ID: 26034280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.
    Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H
    Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overhang polarity of chromosomal double-strand breaks impacts kinetics and fidelity of yeast non-homologous end joining.
    Liang Z; Sunder S; Nallasivam S; Wilson TE
    Nucleic Acids Res; 2016 Apr; 44(6):2769-81. PubMed ID: 26773053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. END-seq: An Unbiased, High-Resolution, and Genome-Wide Approach to Map DNA Double-Strand Breaks and Resection in Human Cells.
    Wong N; John S; Nussenzweig A; Canela A
    Methods Mol Biol; 2021; 2153():9-31. PubMed ID: 32840769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin mobility is increased at sites of DNA double-strand breaks.
    Krawczyk PM; Borovski T; Stap J; Cijsouw T; ten Cate R; Medema JP; Kanaar R; Franken NA; Aten JA
    J Cell Sci; 2012 May; 125(Pt 9):2127-33. PubMed ID: 22328517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks.
    Aymard F; Bugler B; Schmidt CK; Guillou E; Caron P; Briois S; Iacovoni JS; Daburon V; Miller KM; Jackson SP; Legube G
    Nat Struct Mol Biol; 2014 Apr; 21(4):366-74. PubMed ID: 24658350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping DNA Breaks by Next-Generation Sequencing.
    Baranello L; Kouzine F; Wojtowicz D; Cui K; Zhao K; Przytycka TM; Capranico G; Levens D
    Methods Mol Biol; 2018; 1672():155-166. PubMed ID: 29043624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro DNA double-strand break repair assay based on end-joining of defined duplex oligonucleotides.
    Datta K; Purkayastha S; Neumann RD; Winters TA
    Methods Mol Biol; 2012; 920():485-500. PubMed ID: 22941624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA double-strand break repair pathway choice and cancer.
    Aparicio T; Baer R; Gautier J
    DNA Repair (Amst); 2014 Jul; 19():169-75. PubMed ID: 24746645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells.
    So CC; Martin A
    PLoS Genet; 2019 Apr; 15(4):e1008101. PubMed ID: 30946744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.