These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 27525976)
1. DSBCapture: in situ capture and sequencing of DNA breaks. Lensing SV; Marsico G; Hänsel-Hertsch R; Lam EY; Tannahill D; Balasubramanian S Nat Methods; 2016 Oct; 13(10):855-7. PubMed ID: 27525976 [TBL] [Abstract][Full Text] [Related]
2. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks. Murmann-Konda T; Soni A; Stuschke M; Iliakis G Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628 [TBL] [Abstract][Full Text] [Related]
3. Development of a novel method to create double-strand break repair fingerprints using next-generation sequencing. Soong CP; Breuer GA; Hannon RA; Kim SD; Salem AF; Wang G; Yu R; Carriero NJ; Bjornson R; Sundaram RK; Bindra RS DNA Repair (Amst); 2015 Feb; 26():44-53. PubMed ID: 25547252 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. Cannan WJ; Pederson DS J Cell Physiol; 2016 Jan; 231(1):3-14. PubMed ID: 26040249 [TBL] [Abstract][Full Text] [Related]
5. The complexity of DNA double strand breaks is a critical factor enhancing end-resection. Yajima H; Fujisawa H; Nakajima NI; Hirakawa H; Jeggo PA; Okayasu R; Fujimori A DNA Repair (Amst); 2013 Nov; 12(11):936-46. PubMed ID: 24041488 [TBL] [Abstract][Full Text] [Related]
6. The SWI/SNF ATPase BRG1 stimulates DNA end resection and homologous recombination by reducing nucleosome density at DNA double strand breaks and by promoting the recruitment of the CtIP nuclease. Hays E; Nettleton E; Carter C; Morales M; Vo L; Passo M; Vélez-Cruz R Cell Cycle; 2020 Nov; 19(22):3096-3114. PubMed ID: 33044911 [TBL] [Abstract][Full Text] [Related]
7. Predicting double-strand DNA breaks using epigenome marks or DNA at kilobase resolution. Mourad R; Ginalski K; Legube G; Cuvier O Genome Biol; 2018 Mar; 19(1):34. PubMed ID: 29544533 [TBL] [Abstract][Full Text] [Related]
8. The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks. Kendek A; Wensveen MR; Janssen A Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573397 [TBL] [Abstract][Full Text] [Related]
9. DNA Breaks and End Resection Measured Genome-wide by End Sequencing. Canela A; Sridharan S; Sciascia N; Tubbs A; Meltzer P; Sleckman BP; Nussenzweig A Mol Cell; 2016 Sep; 63(5):898-911. PubMed ID: 27477910 [TBL] [Abstract][Full Text] [Related]
10. High-Throughput Analysis of DNA Break-Induced Chromosome Rearrangements by Amplicon Sequencing. Brown AJ; Al-Soodani AT; Saul M; Her S; Garcia JC; Ramsden DA; Her C; Roberts SA Methods Enzymol; 2018; 601():111-144. PubMed ID: 29523230 [TBL] [Abstract][Full Text] [Related]
11. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Gursoy-Yuzugullu O; Ayrapetov MK; Price BD Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7507-12. PubMed ID: 26034280 [TBL] [Abstract][Full Text] [Related]
12. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells. Sankaranarayanan K; Taleei R; Rahmanian S; Nikjoo H Mutat Res; 2013; 753(2):114-130. PubMed ID: 23948232 [TBL] [Abstract][Full Text] [Related]
13. Overhang polarity of chromosomal double-strand breaks impacts kinetics and fidelity of yeast non-homologous end joining. Liang Z; Sunder S; Nallasivam S; Wilson TE Nucleic Acids Res; 2016 Apr; 44(6):2769-81. PubMed ID: 26773053 [TBL] [Abstract][Full Text] [Related]
14. END-seq: An Unbiased, High-Resolution, and Genome-Wide Approach to Map DNA Double-Strand Breaks and Resection in Human Cells. Wong N; John S; Nussenzweig A; Canela A Methods Mol Biol; 2021; 2153():9-31. PubMed ID: 32840769 [TBL] [Abstract][Full Text] [Related]
15. Chromatin mobility is increased at sites of DNA double-strand breaks. Krawczyk PM; Borovski T; Stap J; Cijsouw T; ten Cate R; Medema JP; Kanaar R; Franken NA; Aten JA J Cell Sci; 2012 May; 125(Pt 9):2127-33. PubMed ID: 22328517 [TBL] [Abstract][Full Text] [Related]
16. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Aymard F; Bugler B; Schmidt CK; Guillou E; Caron P; Briois S; Iacovoni JS; Daburon V; Miller KM; Jackson SP; Legube G Nat Struct Mol Biol; 2014 Apr; 21(4):366-74. PubMed ID: 24658350 [TBL] [Abstract][Full Text] [Related]
17. Mapping DNA Breaks by Next-Generation Sequencing. Baranello L; Kouzine F; Wojtowicz D; Cui K; Zhao K; Przytycka TM; Capranico G; Levens D Methods Mol Biol; 2018; 1672():155-166. PubMed ID: 29043624 [TBL] [Abstract][Full Text] [Related]
18. An in vitro DNA double-strand break repair assay based on end-joining of defined duplex oligonucleotides. Datta K; Purkayastha S; Neumann RD; Winters TA Methods Mol Biol; 2012; 920():485-500. PubMed ID: 22941624 [TBL] [Abstract][Full Text] [Related]
19. DNA double-strand break repair pathway choice and cancer. Aparicio T; Baer R; Gautier J DNA Repair (Amst); 2014 Jul; 19():169-75. PubMed ID: 24746645 [TBL] [Abstract][Full Text] [Related]
20. DSB structure impacts DNA recombination leading to class switching and chromosomal translocations in human B cells. So CC; Martin A PLoS Genet; 2019 Apr; 15(4):e1008101. PubMed ID: 30946744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]