These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 27526133)
1. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios. Sun N; Xu HN; Luo Q; Li LZ Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133 [TBL] [Abstract][Full Text] [Related]
2. Potential Biomarker for Triple-Negative Breast Cancer Invasiveness by Optical Redox Imaging. Feng M; Xu HN; Jiang J; Li LZ Adv Exp Med Biol; 2021; 1269():247-251. PubMed ID: 33966225 [TBL] [Abstract][Full Text] [Related]
3. Optical Redox Imaging Detects the Effects of DEK Oncogene Knockdown on the Redox State of MDA-MB-231 Breast Cancer Cells. Wen Y; Xu HN; Privette Vinnedge L; Feng M; Li LZ Mol Imaging Biol; 2019 Jun; 21(3):410-416. PubMed ID: 30758703 [TBL] [Abstract][Full Text] [Related]
4. Quantitative mitochondrial redox imaging of breast cancer metastatic potential. Xu HN; Nioka S; Glickson JD; Chance B; Li LZ J Biomed Opt; 2010; 15(3):036010. PubMed ID: 20615012 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence. Danylovych HV Ukr Biochem J; 2016; 88(1):31-43. PubMed ID: 29227076 [TBL] [Abstract][Full Text] [Related]
6. Differential Expression of PGC1α in Intratumor Redox Subpopulations of Breast Cancer. Lin Z; Xu HN; Wang Y; Floros J; Li LZ Adv Exp Med Biol; 2018; 1072():177-181. PubMed ID: 30178342 [TBL] [Abstract][Full Text] [Related]
7. Assessing the Redox Status of Mitochondria Through the NADH/FAD Chi H; Bhosale G; Duchen MR Methods Mol Biol; 2022; 2497():313-318. PubMed ID: 35771452 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay. Alam SR; Wallrabe H; Svindrych Z; Chaudhary AK; Christopher KG; Chandra D; Periasamy A Sci Rep; 2017 Sep; 7(1):10451. PubMed ID: 28874842 [TBL] [Abstract][Full Text] [Related]
9. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Ostrander JH; McMahon CM; Lem S; Millon SR; Brown JQ; Seewaldt VL; Ramanujam N Cancer Res; 2010 Jun; 70(11):4759-66. PubMed ID: 20460512 [TBL] [Abstract][Full Text] [Related]
10. Characterizing the metabolic heterogeneity in human breast cancer xenografts by 3D high resolution fluorescence imaging. Xu HN; Zheng G; Tchou J; Nioka S; Li LZ Springerplus; 2013 Dec; 2(1):73. PubMed ID: 23543813 [TBL] [Abstract][Full Text] [Related]
11. Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cao R; Wallrabe H; Siller K; Rehman Alam S; Periasamy A Cytometry A; 2019 Jan; 95(1):110-121. PubMed ID: 30604477 [TBL] [Abstract][Full Text] [Related]
12. In vivo metabolic evaluation of breast tumor mouse xenografts for predicting aggressiveness using the hyperpolarized (13)C-NMR technique. Xu HN; Kadlececk S; Pullinger B; Profka H; Cai K; Hariharan H; Rizi R; Li LZ Adv Exp Med Biol; 2013; 789():237-242. PubMed ID: 23852500 [TBL] [Abstract][Full Text] [Related]
13. Aberrantly upregulated TRAP1 is required for tumorigenesis of breast cancer. Zhang B; Wang J; Huang Z; Wei P; Liu Y; Hao J; Zhao L; Zhang F; Tu Y; Wei T Oncotarget; 2015 Dec; 6(42):44495-508. PubMed ID: 26517089 [TBL] [Abstract][Full Text] [Related]
14. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Bartolomé F; Abramov AY Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020 [TBL] [Abstract][Full Text] [Related]
15. Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State. Hou J; Williams J; Botvinick EL; Potma EO; Tromberg BJ Cancer Res; 2018 May; 78(10):2503-2512. PubMed ID: 29535219 [TBL] [Abstract][Full Text] [Related]
16. Optical Redox Imaging Is Responsive to TGFβ Receptor Signalling in Triple-Negative Breast Cancer Cells. Xu HN; Jacob A; Li LZ Adv Exp Med Biol; 2022; 1395():269-274. PubMed ID: 36527648 [TBL] [Abstract][Full Text] [Related]
17. A regulatory role of NAD redox status on flavin cofactor homeostasis in S. cerevisiae mitochondria. Giancaspero TA; Locato V; Barile M Oxid Med Cell Longev; 2013; 2013():612784. PubMed ID: 24078860 [TBL] [Abstract][Full Text] [Related]
18. Effects of p67phox on the mitochondrial oxidative state in the kidney of Dahl salt-sensitive rats: optical fluorescence 3-D cryoimaging. Salehpour F; Ghanian Z; Yang C; Zheleznova NN; Kurth T; Dash RK; Cowley AW; Ranji M Am J Physiol Renal Physiol; 2015 Aug; 309(4):F377-82. PubMed ID: 26062875 [TBL] [Abstract][Full Text] [Related]
19. Mapping metabolic changes by noninvasive, multiparametric, high-resolution imaging using endogenous contrast. Liu Z; Pouli D; Alonzo CA; Varone A; Karaliota S; Quinn KP; Münger K; Karalis KP; Georgakoudi I Sci Adv; 2018 Mar; 4(3):eaap9302. PubMed ID: 29536043 [TBL] [Abstract][Full Text] [Related]
20. Optical Redox Imaging Differentiates Triple-Negative Breast Cancer Subtypes. Jiang J; Feng M; Jacob A; Li LZ; Xu HN Adv Exp Med Biol; 2021; 1269():253-258. PubMed ID: 33966226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]