These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 27526716)
21. Degradation of 4-bromophenol by Ochrobactrum sp. HI1 isolated from desert soil: pathway and isotope effects. Golan R; Gelman F; Kuder T; Taylor AA; Ronen Z; Bernstein A Biodegradation; 2019 Feb; 30(1):37-46. PubMed ID: 30350250 [TBL] [Abstract][Full Text] [Related]
22. Transformation and stable isotope fractionation of the urban biocide terbutryn during biodegradation, photodegradation and abiotic hydrolysis. Junginger T; Payraudeau S; Imfeld G Chemosphere; 2022 Oct; 305():135329. PubMed ID: 35709839 [TBL] [Abstract][Full Text] [Related]
23. Carbon isotope effects associated with Fenton-like degradation of toluene: potential for differentiation of abiotic and biotic degradation. Ahad JM; Slater GF Sci Total Environ; 2008 Aug; 401(1-3):194-8. PubMed ID: 18466958 [TBL] [Abstract][Full Text] [Related]
24. Carbon and nitrogen stable isotope fractionation during abiotic hydrolysis of pesticides. Masbou J; Drouin G; Payraudeau S; Imfeld G Chemosphere; 2018 Dec; 213():368-376. PubMed ID: 30241081 [TBL] [Abstract][Full Text] [Related]
25. Anaerobic biodegradation of ethylene dibromide and 1,2-dichloroethane in the presence of fuel hydrocarbons. Henderson JK; Freedman DL; Falta RW; Kuder T; Wilson JT Environ Sci Technol; 2008 Feb; 42(3):864-70. PubMed ID: 18323114 [TBL] [Abstract][Full Text] [Related]
26. Pathway-dependent isotope fractionation during aerobic and anaerobic degradation of monochlorobenzene and 1,2,4-trichlorobenzene. Liang X; Howlett MR; Nelson JL; Grant G; Dworatzek S; Lacrampe-Couloume G; Zinder SH; Edwards EA; Sherwood Lollar B Environ Sci Technol; 2011 Oct; 45(19):8321-7. PubMed ID: 21851082 [TBL] [Abstract][Full Text] [Related]
27. Isotope fractionation in aqua-gas systems: Cl(2)-HCl-Cl(-), Br(2)-HBr-Br(-) and H(2)S-S(2-). Czarnacki M; Hałas S Isotopes Environ Health Stud; 2012; 48(1):55-64. PubMed ID: 22092223 [TBL] [Abstract][Full Text] [Related]
28. Stable carbon isotope fractionation during trichloroethene degradation in magnetite-catalyzed Fenton-like reaction. Liu Y; Zhou A; Gan Y; Liu C; Yu T; Li X J Contam Hydrol; 2013 Feb; 145():37-43. PubMed ID: 23286906 [TBL] [Abstract][Full Text] [Related]
29. Mineral identity, natural organic matter, and repeated contaminant exposures do not affect the carbon and nitrogen isotope fractionation of 2,4-dinitroanisole during abiotic reduction. Berens MJ; Ulrich BA; Strehlau JH; Hofstetter TB; Arnold WA Environ Sci Process Impacts; 2019 Jan; 21(1):51-62. PubMed ID: 30484795 [TBL] [Abstract][Full Text] [Related]
30. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline. Cui M; Zhang W; Fang J; Liang Q; Liu D Appl Microbiol Biotechnol; 2017 Aug; 101(16):6563-6572. PubMed ID: 28623382 [TBL] [Abstract][Full Text] [Related]
31. Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene. Renpenning J; Keller S; Cretnik S; Shouakar-Stash O; Elsner M; Schubert T; Nijenhuis I Environ Sci Technol; 2014 Oct; 48(20):11837-45. PubMed ID: 25216120 [TBL] [Abstract][Full Text] [Related]
32. Use of dual carbon-chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater. Palau J; Jamin P; Badin A; Vanhecke N; Haerens B; Brouyère S; Hunkeler D Water Res; 2016 Apr; 92():235-43. PubMed ID: 26874254 [TBL] [Abstract][Full Text] [Related]
33. C and N isotope fractionation during biodegradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM): potential for environmental assessments. Reinnicke S; Simonsen A; Sørensen SR; Aamand J; Elsner M Environ Sci Technol; 2012 Feb; 46(3):1447-54. PubMed ID: 22191999 [TBL] [Abstract][Full Text] [Related]
34. Carbon and Chlorine Isotope Fractionation Patterns Associated with Different Engineered Chloroform Transformation Reactions. Torrentó C; Palau J; Rodríguez-Fernández D; Heckel B; Meyer A; Domènech C; Rosell M; Soler A; Elsner M; Hunkeler D Environ Sci Technol; 2017 Jun; 51(11):6174-6184. PubMed ID: 28482655 [TBL] [Abstract][Full Text] [Related]
35. Mechanistic characterization of anaerobic microbial degradation of BTBPE in coastal wetland soils: Implication by compound-specific stable isotope analysis. Wang G; Guo P; Liu Y; Li C; Wang X; Wang H J Environ Manage; 2023 Jun; 335():117622. PubMed ID: 36867899 [TBL] [Abstract][Full Text] [Related]
36. Aerobic and Anaerobic Biodegradation of 1,2-Dibromoethane by a Microbial Consortium under Simulated Groundwater Conditions. Wang Q; Yang M; Song X; Tang S; Yu L Int J Environ Res Public Health; 2019 Oct; 16(19):. PubMed ID: 31597267 [TBL] [Abstract][Full Text] [Related]
37. Effect of molecule size on carbon isotope fractionation during biodegradation of chlorinated alkanes by Xanthobacter autotrophicus GJ10. Abe Y; Zopfi J; Hunkeler D Isotopes Environ Health Stud; 2009 Mar; 45(1):18-26. PubMed ID: 19191123 [TBL] [Abstract][Full Text] [Related]
38. Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1, 2-dichloroethane by Xanthobacter autotrophicus. Hunkeler D; Aravena R Appl Environ Microbiol; 2000 Nov; 66(11):4870-6. PubMed ID: 11055937 [TBL] [Abstract][Full Text] [Related]