BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27527096)

  • 1. Isobutane Made Practical as a Reagent Gas for Chemical Ionization Mass Spectrometry.
    Newsome GA; Steinkamp FL; Giordano BC
    J Am Soc Mass Spectrom; 2016 Nov; 27(11):1789-1795. PubMed ID: 27527096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New fully automated gas chromatographic analysis of urinary S-phenylmercapturic acid in isotopic dilution using negative chemical ionization with isobutane as reagent gas.
    Dugheri S; Mucci N; Cappelli G; Bonari A; Campagna M; Arcangeli G; Bartolucci G
    J Mass Spectrom; 2020 Jul; 55(7):e4481. PubMed ID: 31770470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Plasma-Based Medium Pressure Chemical Ionization Source for GC-TOFMS.
    Bräkling S; Kroll K; Klee S; Benter T; Kersten H
    J Am Soc Mass Spectrom; 2022 Mar; 33(3):499-509. PubMed ID: 35164508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. CL mass spectra of organic compounds produced by F- reactions.
    Tiernan TO; Chang C; Cheng CC
    Environ Health Perspect; 1980 Jun; 36():47-62. PubMed ID: 7428746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the reagent gas influence collisional activation when performing in situ chemical ionization with an ion trap mass spectrometer?
    Bouchonnet S; Kinani S; Sablier M
    Eur J Mass Spectrom (Chichester); 2007; 13(3):223-6. PubMed ID: 17881790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass spectral analysis of chloropicrin under negative ion chemical ionization conditions.
    Murty MR; Prabhakar S; Lakshmi VV; Saradhi UV; Reddy TJ; Vairamani M
    Anal Chem; 2005 May; 77(10):3406-10. PubMed ID: 15889937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.
    Akutsu M; Sugie KI; Saito K
    Forensic Toxicol; 2017; 35(1):94-103. PubMed ID: 28127409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ chemical ionization in ion trap mass spectrometry--the beneficial influence of isobutane as a reagent gas.
    Bouchonnet S; Kinani S; Sablier M; Pirnay S
    Eur J Mass Spectrom (Chichester); 2007; 13(3):227-32. PubMed ID: 17881791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the Use of Gas Chromatography Coupled to Chemical Ionization Mass Spectrometry (GC-CI-MS) for Stable Isotope Labeling in Metabolomics.
    Capellades J; Junza A; Samino S; Brunner JS; Schabbauer G; Vinaixa M; Yanes O
    Anal Chem; 2021 Jan; 93(3):1242-1248. PubMed ID: 33369389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas chromatography coupled to electron capture negative ion mass spectrometry with nitrogen as the reagent gas--an alternative method for the determination of polybrominated compounds.
    Rosenfelder N; Vetter W
    Rapid Commun Mass Spectrom; 2009 Dec; 23(23):3807-12. PubMed ID: 19904736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Negative Chemical Ionization of Per- and Polyfluoroalkyl Substances via a Liquid Electron Ionization LC-MS Interface.
    Dutt M; Arigò A; Famiglini G; Zappia G; Palma P; Cappiello A
    J Am Soc Mass Spectrom; 2024 May; 35(5):890-901. PubMed ID: 38587900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous selective detection of organophosphate and phthalate esters using gas chromatography with positive ion chemical ionization tandem mass spectrometry and its application to indoor air and dust.
    Bergh C; Torgrip R; Ostman C
    Rapid Commun Mass Spectrom; 2010 Oct; 24(19):2859-67. PubMed ID: 20857446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical ionization mass spectrometry of trimethylsilylated carbohydrates and organic acids retained in uremic serum.
    Schoots AC; Leclercq PA
    Biomed Mass Spectrom; 1979 Nov; 6(11):502-7. PubMed ID: 534687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of diastereomeric conduramine derivatives under electron ionization and chemical ionization mass spectral conditions.
    Ramanjaneyulu GS; Prabhakar S; Bhaskar G; Vairamani M; Yadav JS; Murty VS; Soujanya Y; Sastry GN
    Rapid Commun Mass Spectrom; 2007; 21(4):579-88. PubMed ID: 17262898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective adduct formation by furan chemical ionization reagent in gas chromatography ion trap mass spectrometry.
    Tzing SH; Ghule A; Chang JY; Ling YC
    J Mass Spectrom; 2003 Apr; 38(4):401-8. PubMed ID: 12717752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct quantitative analysis of organic compounds in the gas and particle phase using a modified atmospheric pressure chemical ionization source in combination with ion trap mass spectrometry.
    Warscheid B; Kückelmann U; Hoffmann T
    Anal Chem; 2003 Mar; 75(6):1410-7. PubMed ID: 12659203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of triacetone triperoxide by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization.
    Sigman ME; Clark CD; Fidler R; Geiger CL; Clausen CA
    Rapid Commun Mass Spectrom; 2006; 20(19):2851-7. PubMed ID: 16941533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing the analytical performance of an atmospheric sampling glow discharge ionization source as revealed via ionization dynamics modeling.
    Goeringer DE
    J Am Soc Mass Spectrom; 2003 Nov; 14(11):1315-26. PubMed ID: 14597122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary ozonides of substituted cyclohexenes: a new class of pollutants characterized by collision-induced dissociation mass spectrometry using negative chemical ionization.
    Nørgaard AW; Nøjgaard JK; Clausen PA; Wolkoff P
    Chemosphere; 2008 Feb; 70(11):2032-8. PubMed ID: 17964632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gas pressure and gas type on the fragmentation of peptide and oligosaccharide ions generated in an elevated pressure UV/IR-MALDI ion source coupled to an orthogonal time-of-flight mass spectrometer.
    Soltwisch J; Souady J; Berkenkamp S; Dreisewerd K
    Anal Chem; 2009 Apr; 81(8):2921-34. PubMed ID: 19301914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.